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Figure 1: SMBC Comics by Zach Weinersmith

Definition: Person p is famous iff (if and only if) everyone in this classroom knows p, but p does
not know anyone else in this classroom.

Definition: A single query consists of taking a pair of people (p,q) in the classroom, asking if p
knows ¢, and receiving a response.

Problem Formulation: Determine all the famous people in a classroom with n people, using the
minimum possible number of queries.

1. Who in this classroom do you suppose is famous?
2. How would we test our hypothesis to the previous question?
3. If our hypothesis is wrong, does that mean nobody is famous?

4. How can we generalize our test to determine all famous people in the classroom?

A First Attempt:

1: For all people in the class p:

2: For all people in the class ¢, where p # ¢:

3 Check if p knows ¢. If so, p is not famous. ‘i 13 GBI
4: Check if ¢ knows p. If not, p is not famous.

5 If p is famous, add p to the list of famous people.

6: Return our list of famous people.
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Follow-up Questio?ls: w A )?a%/ﬁwﬁ:\jm«f

1. Is this a good algorithm? net
2. What does it mean for an algorithm to be “good?” fon,,w

How many queries does our algorithm use (exactly)? 2nwn-1 = g h- A > nun-y

- w

How can we improve our algorithm?
5. How many famous people can there be, maximum? |

6. If p does not know ¢ on line 3, is there any information we can deduce? l> 12 et fawwws



A Better Attempt:
Maintain a list of famous candidates, intialized to everyone in the classroom. wfem‘ gt
Take any pair (p, ¢) from the list (if not possible, go to step 5). me  condidpse
Check if p knows ¢. If so, p is not famous. If not, ¢ is not famous.
Remove the non-famous person from the list, and return to step 2. D wannet twke por
There is now one famous candidate c.
For all people in the class ¢ where ¢ # g:

Check if ¢ knows ¢q. If so, nobody is famous. Return null.

Check if ¢ knows c. If not, nobody is famous. Return null.
c is famous. Return c.
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Followup Questions:

1. How many queries does this algorithm use in the worst case? (w-1) + >n-1 = Sy
2. Is this better than our old algorithm? 17%

3. Is this always better than our old algorithm? I~

Y ey m o, nwor better
Important Points

1. When writing algorithms, pseudocode is acceptable (in fact, it is recommended). You can
also write in code, or in English, as long as you provide enough detail. (‘7 1% zo(je Lase %)

2. If a reasonably competent programmer could take your answer and code it up in a language
of their choice, then your answer is acceptable.

3. Algorithms is learned with practice. If you think that you must have a “Fureka” moment
to answer an Algorithms problem on a test, that is merely a sign that you need to practice
more problems.

Core Course Questions

1. Given a problem, how do we produce an algorithm to solve it?

2. Given a problem and an algorithm, can we prove that the algorithm correctly solves the
problem?

. Given an algorithm, will it terminate in a reasonable amount of time? (“"jVWM ol = reatomakle
. What is a reasonable amount of time anyway?
. Are there problems which cannot be solved in a reasonable amount of time?

. How would we identify such problems?

. Are There prblems Tttt ne a(yan?mm com solve
Extra Problems
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1. Improve the algorithm for the Famous Person Problem to require only 3(n— 1) —logn queries.

2. Informally argue why the Famous Person Problem cannot be solved in less than 6(n) queries.



Proofs and Recurrence Relations
Definition: Given two sets A and B, the Cartesian Product Ax B = {(z,y) | v € A,y € B}

Proof Types

1. Proof by Contradiction: if n? is odd, then n is odd.
Aslwme n 2 even and n* 2 odd

n: A /Zﬂ woatvndi Vi v
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2. Proof by Contradiction: There are an infinite number of primes.
Azsnme fw‘-rc af rn‘mu = there i3 a ‘0"‘70,\1— Imw.e, f
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3. Prove or disprove‘} for any sets A, B,C,if Ax C =B x (C, then A= B.

Proof Attempt for 3:

1: Assume the opposite: A x C =B x C' but A # B.

2: Slnce A # B, there must be some element in one set which is not in the other set.

3: wlog, hgsgcuﬁleﬁgye Aand a ¢ B.

4: Take an arbitrary element ¢ € C'. we agwve 3 ¢ m C

5: By definition of cartesian product, (¢,c¢) € A x C, and (a,c) ¢ B x C. Contradiction

with 1. cose 2 C=¢ Ax¢9 =
b ¢

6: If AxC =B xCC then A= B.
Are there any holes in this proof?

Proof Tips

e Run through some examples. This will help convince yourself the claim is true, as well
as give you an intuitive understanding for why its true.

e Use the definition to translate a statement into mathematical form when possible. This
makes the proof easier.

e When doing a proof by contradiction, make sure you are assuming the logical opposite.
Make a truth table if you have to.

e Finding a proof is not a straight line from A to B. Even the most experienced research
scientists go off on incorrect tangents when looking for a proof of a fact. Just keep
deriving stuff until you get what you need.

e If you don’t know whether you need to prove or disprove a statement, follow your
intuition. If you fail to reach the required conclusion, you probably learned something
about the problem. Use this new information and try the other path!



Inductive Proofs

e Prove: Any 2" x 2" chessboard with one square removed can be tiled using 3-square
L-shaped pieces.
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e Find thé ﬂav:; in the proof that a™ = 1 for all non-negative integers n and all non-zero
reals a.
Base Case: a’ = 1.
Inductive Assumption: a” =1, for all n < X.
Inductive Step: aX*! = ‘;fff =4 =1
17»7 a™'-1 ond a’=1 = need > baje ases
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This is how most mathematical
proofs are written.

Figure 1: Abstruse Goose # 230: After working on this proof for years, I have finally decided
that it IS, in fact, obvious.



HOW TO STUDY MATH

Don't just read it; fight it!

- Paul R. Halmos

Figure 2: Abstruse Goose # 353

Mergesort (Array A[1:n])
If n==1 Then return A &V
B = Mergesort(A[1:n/2]) 167
C = Mergesort(A[n/2+1:n]) (%)
return Merge(B,C) (@Fw)

‘Flvv =2 f(%) + Gw)

Questions:

e What is the running time of MergeSort? f\m = Mvhine ’j’ Meﬁ"“f”‘f ca thaps
Ocnlayn)
e How do you know what the running time is?

A recurrence relation is a recursive definition for a sequence of numbers. They can be
used to model the running time of a recursive algorithm.

Recurrence Relation for MergeSort: g(n) = 2¢(3) + dn. g(2) =

Inductive Proof that MergeSort = O(nlogn)

1: Hypothesize that g(n) < cnlogn, for all n > 2. Note that we get to choose what c is.
2: Base Case: We need ¢(2) = e < 2clog2 = 2¢. Choose ¢ large enough so that e < 2c.
3: L.H.: Assume that g(n) < cnlogn, for alln:2 <n <k.

4: Consider g(k + 1). By the definition, g(k + 1) = 2g(*tL) + d(k + 1).

5

6

: By the inductive hypothesis, g(®1) < %L log(%£L).
g(k +1) < c(k + 1)log(BL) + d(k + 1) = e(k + 1)([log(k + 1)] — 1) + d(k + 1) =
c(k+1)log(k+ 1)+ (d —¢)(k + 1).
7: We need c¢(k +1)log(k+ 1)+ (d—¢)(k+1) < ¢(k+1)log(k +1). Choose ¢ large enough
so that d < c.
J sudh C 24 I”ch



Followup Questions:

e Does this prove Mergesort = 0(nlogn)?
e [s it valid to use n = 2 as the base case?
e What would have happened if we tried n = 1 as our base case?

e What are the disadvantages to solving recurrence relations with Induction?
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Figure 3: A Recursion Tree argument that MergeSort = 6(nlogn)
Master Theorem

e Can solve (almost) any recurrence relation of the form f(n) = af(%) + g(n), with
constants a > 1,0 > 1.

e Compare g(n) with 1ot
e Case 1: If g(n) = Q(n%), then f(n) = 0(g(n)logn). rm~fme

e Case 2: If g(n) = Q(n%ﬁ), for some € > 0, then f(n) = 6(g(n)).

> Lig o o leest fome L mﬂ—fm—f lowe r boved
e What should Case 3 be? . "%
case ) ;f ?(") =0 Chn ¢ L’e) f” fome &30 , the- fw\)= ﬁ(w J )
Extra Problems

1. Prove for any integer n: n is odd if and only if 3n + 1 is even.

. Use Induction to prove that > ", QL < 2.

[\

. Chapter 2, exercises 3,4,5,6.

3
4. Challenge problems: Chapter 2, exercise 8



Advanced Runtime Analysis

Master Theorem

e Can solve (almost) any recurrence relation of the form f(n) = af(%) + g(n), with
constants a > 1,b > 1.

loga

e Compare g(n) with nioss |
e Case 1: If g(n) = Q(n%), then f(n) = 6(g(n)logn). M~me
e Case 2: If g(n) = Q(nlogb ), for some € > 0, then f(n) = 60(g(n)).

~ Lrg o oot leest fome L, ot Just Iowcr bovd

e What should Case 3 be?
case b: ff 4o = 0 « V\%—_ ) for some $>0 , the- fw\) 8( vp".? )

Master Theorem Questions

e How much work is done at the top level?

e How many children does the root node have?

e How much work is required at a child node?

e How many grandchildren are there?

e How much work at a grandchild node?

e What is the depth of the tree?

e How many leaf nodes are there?

e How much work at a leaf node?

e How much work is done at the bottom level?

e Solve: f(n) =2f(5)+cn
e Solve: f(n) = f(5)+1

e Solve: f(n)=8f(%)+ 1000n>
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e Solve: f(n) =2f(%)+n? Gwn®)
n:r b=v @\m;h‘z n
Q e Solve: f(n) =2f(5) + = (This one is trickier than it looks!)
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Analyzing Master Theorem by Recursion Tree (credit: GeeksForGeeks)
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Amortized Runtime

Recall the List ADT: uw\flmmol wth on Wfﬂy)

sh-bark o 3 ) 6 ()
1. insert (int position, T value) bes: Gu wodt = Fn) We’”fe ’
owmirtbed wonr (ase: G\

QSworsr wase mw?oe inse

2. remove(int position)

3. set(int position, T value)

4. T get (int position)

= n_(,w,‘o?yv‘ ;9\7\)

9w




(4t =Gy

Analyze the runtime analysis for each of these operations when implementing the List with
an Array.

1. What would be the runtime of Get?
2. What would be the runtime of Remove?

3. What would be the runtime of Insert?

Amortized analysis takes the big picture and says: the first x operations will take no more
than ©(y) time, for an average of ©(%) per operation. Amortized runtime is the worst-case
average-case.

e What would be the amortized runtime of Inserting at the end of an ArrayList?

Let’s say we have a boolean array as a “counter”. Each index starts at 0 (false), and then
the counter starts counting up in binary.

Flipping an index from 0 to 1, or from 1 to 0, costs an operation. Counting from 0000 to
0001 only takes 1 operation, but counting from 0011 to 0100 takes 3 operations.

Our increment function should correctly increase the binary number by 1, flipping all neces-
sary bits.

e What is the worst-case runtime of our increment function?

e What is the amortized runtime of our increment function?

Increment | Time | Total Time | Average Time

1 1 1 1

2 2 3 1.5
3 1 4 1.33
4 3 7 1.75
5t 1 8 1.6
6 2 10 1.67
7 1 11 1.57
8 4 15 1.88
16 ) 31 1.94
32 6 63 1.97
64 7 127 1.98
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Extra Problems

1. Solve the recurrence relation: f(n)
2. Solve the recurrence relation: f(n)

3. Solve the recurrence relation: f(n)
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Minimum Spanning Trees

Given a connected graph G = (V, E), a Spanning Tree is a subset of the edges which form
a tree on the original nodes.

Given a weighted connected graph, a Minimum Spanning Tree (or MST) is the spanning
tree which minimizes the sum of the edge weights.

Kruskal’s Algorithm: Add edges from smallest to largest, unless an edge creates a cycle.
Reverse-Delete: Remove edges in descending order, unless an edge disconnects the graph.

Prim’s Algorithm: Start w/ some root, greedily grow tree like dijkstra’s by choosing the
smallest edge with exactly one endpoint in the explored set.

eWhat is the runtime of Prim’s algorithm? & ( lm la? n)

e What would be the first step in the implementation of Kruskal’s Algorithm? $ort +he edges
for (eoh edse ) |

. . o ‘
e What would the runtime of this step be? @ < o& m) []C WV o Aves

e What is the runtime of Kruskal’s algorithm overall? Q ) . (/U de, odd 7 / DFYBRC
anfvu
New data structure: Union-Find. Maintain one set for each connected component, consisting
of all nodes in that component. w - Gmin
=9y

Union(x,y) combines the sets z and y into a single set.

Find(x) determines which set contains node z. If Find(z) =Find(y), you don’t want to add
the edge (x,y).

Kruskal(V,E)
1: Sort E in ascending order of weight. ¢ W"""ﬁ"")

2: For each edge (z,y) in ascending order of weight { oy pode & BLAA] Jranm -
3: a = Find(z) whith (,oynf);/lewl' 3 X “J

4: b = Find(y) bud: G

5: If a # b Then { Wnim - G\

6: Union(a, ) WGy @) -G
7: Add edge (x,y) - QwtnY

8: } } - 9\’1)/)

2 Z: O mlagm + n*J
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Attempt 1: Each node has a variable which stores the name of the set which it is in.

e How long would Find take? G J

e How long would Union take? 9 \n)

Attempt 2: Each set is identified by a specific node, whom we’ll refer to as the “captain” of

the set. Each node has a pointer to another node in the set. The captain’s pointer will be
null. (,Ar-rwv ole;fmww e rnouve p]c o sexr

e e = MMW “\V\d MjT
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2 e How long Wou?ld Union take, assuming we pass in the captains of sets? gw

e How long would Find take? woat: Gw) = Clogn

” o The worst-case analysis of Find requires a rather stupid decision. How could we im-

v prove our Union-Find data structure?

A\ T N

N
"\‘S\N

e [f we do a union between trees of depth x and y, where x < y, what is the depth of
the new tree? y

AN

e When would a union produce a tree of greater depth? 2 C“f'fWV’ vrrth QT,@[ ;\6;7.,\,7—
e What is the depth of a 1,2, or 3 node tree?
e What is the greatest depth possible for a 4 node tree?
e How many nodes are required to produce a depth-3 tree?
e How many nodes are required to produce a depth-4 tree?
e What is the runtime of Find? (9 ( LJ? ")
@“) Sort
e What is the runtime of Union, assuming we pass in set captains?

Owntg™)

e Putting it all together: what is the runtime of Kruskal’s Algorithm? 4+, @ Lbj w +wy G

e Why does the book give a different runtime analysis for Kruskal’s algorithm?
G lo; n)
<y v
G 107 m) < g m loﬁn") z Fomlugny =9 LW,(DQV‘)

THeB- v fod 04 5THVE AR I Bk (BB A R R LID) captoun ) 22 WY e Sfond § vetinne



To get a better runtime for Kruskal’s, we would need to find a better sorting algorithm.
MergeSort obtains §(nlogn): is it possible to beat this?

Claim: Comparison-based sorting takes Q(nlogn) time.

A sorting algorithm is comparison-based if we make comparisons between elements in the
array-to-be-sorted, and determine the sorted order based on those comparisons.

Comparison Based Sorting Lower Bound (

Decision Tree of Program

e When we reach a leaf node in a decision tree, what do we know?

U 2 the fw\d sorted order

e How many leaf nodes must there be when we wish to sort n numbers?

zw! L& leaf node Th 1j) - Ff permvarion)

e How deep must the tree be to achieve this?

Z lgn nt g
’ ?T; W =0 (nY
%rﬁ(ri%nf gt = eLlogn") - @ n |o7n)

e [s there such a thing as a sorting algorithm which is not comparison-based?
Radix Sort



362 207 207 mever divectly compere Tt rumbend
436 436 %53
291 253 291
487 362 362
207 487 397
253 291 436
397 397 487

LSD Radix Sorting:
Sort by the last digit, then
by the middle and the first one

e What is the runtime of Radix Sort?
Bln #)
r
the} /mmwwm Aig B M afﬁ Me  Mmnmber
e [s this better than MergeSort?

De,)ends om 0(/1‘73 of e Wmber

e What is the best achieveable runtime to sort an array of size n, which contains the
numbers 1 through n randomly permuted?

Z P 1
becr twe ( - TET %21/”4"' \ﬁ\‘z‘lﬁg’ﬂm\«w owt )

Graphs

ossume e wmudti-edges . e Sdf -INI»
An unweighted graph G is defined by two sets, G = (V, FE). V = vertices/nodes. E = edges

between pairs of nodes. n = |V|,m = |E].

Some questions:

e What is a simple graph? i Mw(;l"-edyeAJ e .Sdf“oo/))

e What is a simple cycle? s repest pwdes {WMA‘ : com repest  nodea
= Wue & uvimit ¢ odlow Nfeoa' necles ) l,m . Cow vt Nfuq— nodes
e When is an undirected graph a tree?
n-i edger, connedted, o e Lﬂw\y 2 -‘lelA] the thivd )
e What basic search algorithms can you use to determine if there is a path between two
nodes s,t?

BFS = fnd shortest poth

Q{DFS

nwwtrwe - g wm+w



e What are the running times of these search algorithms? & Cm+n)

e Which of these algorithms work if you are specifically looking for the shortest path? BFS

A graph is bipartite if nodes can be colored red or blue such that all edges have one red
end and one blue end. no Mmone - whred o,vfﬁe/_\

: %@ % Q ®
@

OaC

@
odd |%7—fk Uyde.
e What was wrong with the second example? Why was 1t impossible to color correctly?
if & 7m1>h hes own odd —lengrh e, them 3 wet Lq:wﬁ‘t-e

e [s the converse of that statement necessarily true?
wwene: U o h B ot bporfie, then I~ hoa o odd (engrh 011010
e How could one write an algorithm to test whether a graph is bipartite? This should

be based on a basic search algorithm.
nse BFS fost : find an edge between Two  nades o the Soume lamer of A BFS tre

A directed graph is strongly connected if every pair of nodes can reach each other. - @8, 2k~ |‘2’\3ﬂ4
R f/\ﬂolc

Bipartite Graph Questions:

A directed graph is connected if for every pair of nodes, one can reach the other.

A directed graph is weakly connected if every pair of nodes can reach each other if you
ignore edge directions.

a b a b

e d e d

§TV'M7L7 vnneyed wnnenred



Connectivity Questions:

Tme e Is the following statement true or false? Let s be an arbitrary node. G is strongly r)/

connected iff every node is reachable from s and s is reachable from all nodes. nas
>V <« evenytiuig Lowr st Go thraph &

e How could one write an algorithm to test whether a graph is strongly connected?

e Can we improve the efficiency of our algorithm?
Extra Problems:

e Chapter 3, exercises 2, 4, 5, 7, 9, 10

e Challenge problems: Chapter 3, exercises 6, 12

Algorithena ﬁmrwva:
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A directed acyclic graph (or DAG) is a directed graph with no directed cycles.

A topological order of a directed graph is an ordering of its nodes vy, ..., v, such that for
every edge (v;,v;), @ < j.

Questions:

e How are these two concepts related?
’f Z 7*’57714 hos o -fv/m(/oﬁ.‘ccu( order , thea 15 a PAG.

e Does every DAG have a topological ordering?

7
ho fortef Tes
vndition
v Tmee True or False: If G is a DAG, then it has a node with no incoming edges.
prove prof by contredittion :

asswme e node hey fome ,mm}a U}"“~
pide me nide, 9o theouph (74 Mionuihp eclpes
5) AL E / mfwive wode ) 2 @il

e Design an algorithm to find a topological ordering, given the above idea.
stort with the nede l'\?\MU” ne '\'\W"Wb" 0’?% @ - 0w

remove

them -Ardm‘e lhwmbﬂ exz(fo,,, fnel next neee o saabp eo’oa

N Worsr tase : n v
nse M hom

e What is the runtime of the algorithm?
G cnmrny

e What would this algorithm look like if we calculated the topological order in reverse?

= Gumm)y m rodf

e What basic algorithm would aid in finding the topological order in reverse? m+
W ke -m,,wft. 7’“7"" codin lose .v\-d,7,~g,, afa(/t nideg "
ML’)NW': Icez,fu:\f towk °f hiVh wnedes have no Mwwly eﬁ{f@
fer 7MW& aﬁ nodes /o Mwmﬁf edﬁ% add  +Hiemn 10 7‘4%&
r ’ while ( T’hﬁy ™ 70\%&) s NIy
nd nded, uene
when renove  meded, W"V dheck divected e fron wete :(ajwmw 33 of Ml«-mtf ¢d7% f’F rockes l’alw lj the prev necle
devement the H of M tonaing cdfm 8 S . .
if the nude hos 0 iewdp eqfer, add Huem to quene ‘f fuen fr plf epes =2 Yt pode nexy)

A +v gueue .
” 7 = 20{+(V):M
v



n reverse:
K nvde nwith e Mﬁa'tf aoyz, \ﬁj% ", M%fﬁ’lliv;l’%&\,l
W decd-end, 7R bk tvocay, SR 1] nocde T Bie e T2, BE deod - end

nie DFS (9 %4 visited TR 2, )



Dynamic Programming

Fibonacci(int n)
1: If n <2 Then Return 1
2: Return Fibonacci(n-1)+Fibonacci(n-2)

Calculating Fibonacci Numbers

e What is the recurrence relation for this algorithm?
Twi= Twa-v = Tun-y) +G0)

e Can Master Theorem solve this recurrence? ¢

ZV\ Gw nwhwe = (ium ﬂf ﬁ?ﬁ' N T’;LVM&\M nwnbess
n-1 @ w
vr{ \/ wnv OGw 5 B -
\ * B v recnnicn R R %rﬁ«mﬂaimvm
w/) "y oy o
9\}')
9.8

e What is my algorithm doing which is rather stupid?

- A
3545
e How could I fix this problem?

TR remmrsive & iteative

DynamicProgrammingFibonacci(int n)

1: A1l =1

2: A)2]=1

3: Fort=3ton oW

4: Al = Ali — 1] + Afi — 2]

5: Return A[n] (K% > wt )

Memoization is the process of writing down intermediate results to refer to later.

Dynamic Programming is the process of transforming a recursive function which repli-
cates work into an iterative one which solves each subproblem once, writing down the answer
for future reference.

“wite Stff Dowm ’

%5 recncsive B %5 10 #D)



Dynamic Programming - biwited Bute forwe Seqrth

In the Weighted Interval Scheduling problem, we have n jobs. Job j has start time

sj, finish time f; and value v;. Two jobs are incompatible if their times overlap. Find the
-valued subset of mutuall tible jobs. N

max-valued subset of mutually compatible jobs l%wc«Srw Decisim

. . |

P i I

0 1 2 3 4 S 6 7 8 9

® N a6 s W N -

10

What is the optimal solution for the above instance? 7’/7 / 3, b, §

Finding the optimal solution in general is a daunting task. It is always a good idea to split
the problem up into smaller, bite-size pieces. Yor = Sv G=tselve for Oy, +u

Question 1: Do I include interval 1 in my solution or not? ~¢ L= (solve fr &

> @y
Question 2: Do I include interval 2 in my solution or not?, etc. ¢ returm mox (o1, b)

The top level of our recursion will tackle the first piece. Each successive function call will
tackle a later piece. We do not yet know if we should include interval i. Therefore, we will
try including it, and try not including it, and determine which of the two produce a better
solution overall.

e If I do not include interval 1, what is the next question which should be asked?
e If I do include interval 1, what is the next question which should be asked?

e [f x is the best value that can be obtained on intervals 4 through 8, then what is the
best value that can be obtained if I include interval 17

We will define S[z] to be the first interval ¢ such that s; > f.. We are assuming that
the intervals are sorted by s;, and that we fill this array out prior to running our recursive
algorithm. We will define S[z] = n+1 when there are no intervals that satisfy this condition.

WIS(integer z)

1: If 2 > n Then Return 0

2: x = WIS(z+ 1)

3: y =v,+ WIS(S[z])

4: Return max(xm fo wrenved whese  Stovt J z f\vVTxh 2

se Memonzotion

KirRTam, BT MMA R
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R g rernte

After this point we want to unroll this into a iterative solution which does not repeat work.

WIS (integer z
1: I/Iﬁ[n et :)0 A W) Frg] ok AR Bt i

2: Forz=ntol

Ow 3:

Wz] = max(Wz + 1], v, + W[S[z]]) %) %,é[

4: Return W[1]
= D7nwwn, Prvjro\mwwly fort - Oun)

1. This is our base case from the recursive function. [/ (n+i)=0

2. Here we are identifying the order in which we fill the array. We need to identify the

order such that we have the information we need when we need it. If we tried to fill
this array in from 1 to n, we would have failed.

. We're calculating W{z] in the exact same way we calculated WIS(z), except we have

the values W[z + 1] and W[S[z]] written down (memoized) for future use, instead of
recursively calculating them on the spot.

. After we have found our array, we need to identify where the answer is stored in the

array, and return that value.

=&

{77 ATA 4[5 1]0]

You can write your solutions in the above manner if you wish. I'll go through the exact
same process, but in a less formal, more “pseudo-code” type description, which you are
encouraged to use. This is generally easier to read and grade. You must identify 5 things in
such a description:

. State what parameters your function accepts, and what value it returns. We are not

mind-readers, so please explain what you are doing.
def»\ne ! ) OWIPWT  povTuneres

. Give the recursive function to calculate your intended function output. This is usually

the hardest step.

. Give the base case(s) for your recursive function.
. State what order you will fill the array in for your iterative procedure.

. State where the answer is stored in your final array.

Ruvwhwe



1: Let WIS|[z] contain the best value which is attainable on intervals z through n.
2: WIS[z] = max(WIS[z + 1], v, + WIS[S[2]])
3: WIS[n+1] =0
4: Fill the array in reverse order from WIS[n + 1] to WIS[1]
5: The answer is stored at WIS[1].
Dynamic Programming Design Process
1. Reduce the problem to a series of ordered decisions (What is the nth, (n-1)st, (n-2)nd,

etc, fibonacci number? Do we include interval 1, 2, 3, etc?). The simpler the decisions
are, the better.

2. Make sure your subproblems can be described concisely: this description is what we
pass down to the next level of recursion (We only need to remember which fibonacci
number we're currently calculating. We only need to remember which interval we're
currently considering).

3. Design a recursive procedure to make these decisions in an ordered way.

4. Instead of using recursion, show how to solve this problem by iteratively filling out a
table.

Why do you suppose this programming technique is called Dynamic Programming?

Extra Problems:

e Chapter 6: exercises 1, 4, 6, 19, 20, 26, 27

e Challenge problems: Chapter 6: exercise 24



Lecture 8: Dynamic Programming

You can write your solutions as code if you wish. I'll go through the exact same process,
but in a less formal, more “pseudo-code” type description, which you are encouraged to use.
This is generally easier to read and grade. You must identify 5 things in such a description:

¥*

1.

4.

5.
6.

State what parameters your function accepts, and what value it returns. We are not

mind-readers, so please explain what you are doing.
defme 0 wT povouneers

Give the recursive function to calculate your intended function output. This is usually
the hardest step.

Give the base case(s) for your recursive function.
State what order you will fill the array in for your iterative procedure.

State where the answer is stored in your final array.
Ruwtme

: Let WIS[z] contain the best value which is attainable on intervals z through n.

: WIS[z] = max(WIS[z + 1], v, + WIS[S[z]])

: Fill the array in reverse order from WIS[n + 1] to WISJ[1]

1
2
3: WIS[n+1] =0
4
5

: The answer is stored at WIS[1].

Dynamic Programming Design Process

1.

Reduce the problem to a series of ordered decisions (What is the nth, (n-1)st, (n-2)nd,
etc, fibonacci number? Do we include interval 1, 2, 3, etc?). The simpler the decisions
are, the better.

Reduw. +he walw + Lyw-xim deu3ions .

Make sure your subproblems can be described concisely: this description is what we
pass down to the next level of recursion (We only need to remember which fibonacci
number we're currently calculating. We only need to remember which interval we're
currently considering).

Design a recursive procedure to make these decisions in an ordered way.

. Instead of using recursion, show how to solve this problem by iteratively filling out a

table.



Longest Increasing Subsequence

Given a sequence of numbers sy, so, ..., $,,, delete the fewest numbers possible so that what
is left is in increasing order.

Example input: 3,4,1,2,8,6,7,5,9

We'll try the same bite-size questions we have in the previous problems.

Q1: Do we keep s; or not? corn oo L1S pos, bwer bwud) V. wod work
O net ?owl ahine

e If I do not keep s;, which number should I try next? (.
e If I do keep s1, which number should I try next? next [ 1] =%

N Jnst bigger thon §i
e What information must be passed down to the next levef of recursion?

LTS Cx) = mmax LTS T x41], 14 LTS T foat i bigger than x ]
IR break nereasinp X

e [s this information concise?

We lost some critical information: the largest number we’ve included so far. This information
needs to appear in the parameters, or else we will have to pass a ton of information down
the recursion chain.

Attempt 2 bite-size questions: Yy s ‘W/W\Z? %R Drwk g
Qi: If I include s;, what number should I include next? . |
kz1, Ses> §r ﬁ%%%‘?ﬁf ‘

LIS[z] will store the length of the longest increasing subsequence which starts with s,.

LIS[n+1] =0 T+ L1sTk] o ;
Listz) = k K>z, §k>$2( ) ~BA 28 nony M BL Burto ik
e [ don’t know which number to include after s, so I try all of them. Well, not really
all of them, there are some constraints. What constraints do I place on which number
I can include next?

(CorLasvel)

What does the recursive formula look like for LIS[z]? [1¢T17) = F |l72 G

What order do I fill in the array? %

Where is the answer stored in the completed array?
Pwd the max of the LI oy
e How do I reconstruct the actual séquence?

e What is the runtime of the algorithm?

L D’H"J =0 3747172’8’677’579
frez=ntoa) S¢SV 4232210 .
L1$72) = Mo Cir L)) con Sowe l)a'wi to 7@fﬁ\£ vedmes .
k- k22, Sk>83

retmn mox of LLSL]

Qcn”)



— of Iwpnt 3 o lg,x
Primatity(nt x) 7 1T K %@% gy 79
1: Fori=2to X —1 =7
2: If X%i = 0 Then Return False
3: Return True

>oWnenmiod T vedme
e What is the runtime of the above algorithm? | \/j

° - 7
Ow X = 2l P 2 nanme 3 (’J({)lme&m‘m{ /,D!@M‘? polyneneing
e Is this a polynomial-running time algorithm? 2% % %3 valme, 45 # of nprt D o
/\/0- Lal«mﬁée, lneer ™m rdaﬁm#mw

e When I ask if an algorithm is polynomial, it must be in relation to something. In
relation to what, specifically?

# a)C 1\'\17vﬂ'
Coin-Changing:

There are n denominations of coins 1 = d; < ds < ... < d,, (you have an unlimited amount
of each coin). You have a target sum 7. Determine the fewest number of coins needed to
make change.

e Suppose I'm using American currency (d; = 1,dy = 5,ds = 10,d4 = 25). What would
be an optimal algorithm?

hRRHE R AL AN T, Baoakia -

e Suppose my currency is d; = 1,dy = 10, d3 = 15. Does the above algorithm still work?
No 5'7 . T= 0

e [ need to break this up into bite-size decisions. What should my first decision be?
IMherthes 70\4 tokee tWid »oin

e What information do I need to pass down to the next level of recursion?

CClz] will be the fewest number of coins needed to make change for z cents.

e If I select denomination d; next, what recursive call should I make?

cCix)= manlCelt-di]) + | CCTo)=0
i:disy
e [f I select denomination d; next, how does this change the number of coins I've used?

+)



e At what point should I stop recursing?

wWent 1o 0O
CClz] = 1 + min;(CClz — dy)) ceto)
CClo] =0 P Lo 10 T _
CClz] = oo, for all z < 0. CCLT] =1t wum Celv—di]

Todi <t

e What order should I fill the array? ret, co 0] 1
‘frvw 0+ X

e Where is the answer stored?
ccix)
e What is the runtime of the algorithm?

On2"T) (:8(n]>)

e [s this a polynomial-running time algorithm?

No .



Lecture 9: 2-D Dynamic Programming

Assembly-Line Scheduling

There are 2 assembly lines, each with n stations. The ¢th station on each line is denoted S ;
and Sy;. An automobile starts at your choice of S;; or Sy;. Station S;; has a processing
time a; j. After station 5; ;, the automobile can stay on the same line and go to S; ;41 at no
cost, or switch lines at cost ¢; ;

a,;,j = I)mous-»jv twe

s11 S1j S1n

e1 X1

821 82§ 82n

4 L,J 1] = (S Dine other bive ] L] + tvi)rﬂ, SU)9+)) + iy
If wé want to find the shortest path across the assembly lines, what basic algorithm
could we use to solve this? ijké‘h% ﬁ(,y\ Lay n)

e We need to break this up into a series of ordered decisions. What should our first

decision be? Our second decision?
M mwwent Lk
o At each level of thpgrecursion we will be answered a single decision. What information

changes at each level of the recursion, and thus must be passed down as parameters?
AlLS U/, 1 0% the hwe NAM\,U S 3 e ctaBem

o If I am at S; ;, what cost will I incur regardless of my choice?

o If [ am at S; ;, and I decide to stay on the same line, what station will I go to next?

o If [ am at S;;, what cost will I incur if I decide to switch lines?

Define: ALS[i, j] will store the length of the shortest path from S; ; to the exit.

)

b 1;{ g ALS[l,j] = Q44 + mln(ALS[Lj + 1], tl,j + ALS[Q,] + ]

)

‘.,JT ALS[2, j] = a; j + min(ALS[2, 5 + 1],t2; + ALS[1, 5 + 1])
ALST, ] = Qg + mm(AVSTI, 0], T + AT ngt))

e What is the base case?

ALSTi, h3 Qi {-vr;,:m-wl
e What order do I fill in the array? priz=ia

backward = N N
e Where is the answer stored i m the completed array? g ASU] T/J 1, AL 2T

Ab}Dr) ) or ALST/‘V)DJ
e What is the runtime of this algorithm?

I_?t ")) . .
e How do I determine the actual path through the assembly lines?
& it of earh step



Sequence Alignment

We are given two strings X = zyxs...2, and Y = y19s...Ym, and we want to determine how
similar these strings are.

%) wsert/ remove
X=ocurrance

Y=occurrence

o [f we simply check how many positions ¢ satisfy x; = y;, what will we determine is the
difference between these two strings?

e The above metric isn’t very intelligent. What number should we really return?

o~ i H of editl 1o thnSfom X by sfter osert gz / rewove vhov
The edit distance between two strings is the minimal distance possible between two strings

after inserting your choice of spaces. Our goal is to efficiently calculate the edit distance
between X and Y.

X=oc-urrance

W , reawwve
Y=occurrence mam L wset )

GATE]TT]) — edd Ao afrcr et spous afrer )
SATIV] - edit dBtone ofte remeve i Chor
e We need to break the problem into bite-size decisions. What should be our first
question?
Msert / remove / re/};lﬁ\w/m'dv”\

e The top level of recursion will handle the first decision only. What information do we
need to pass down to the next level of recursion?

ro, -f»r X ond /’aj flr \7

Edit distance = 2

Define: SA[i, j] is the min cost of aligning strings ;z;+1...2, and Y;y;11Ym.

o If z; = y;, what recursive call should I make?
SA T+, ]-u]
What cost is incurred if z; # y;?
|
If T accept the mismatch between x; and y;, what recursive call should I make?

If T insert a gap in the X string, what recursive call should I make?

Under what conditions should I stop recursing?
SATH e Croploce s

if xieyy . SATL]Y = e man SATin, 3] Cemwve,

(A W,quj L add nngX)



i,j] = SA[i + 1,7 + 1], if z; = y;
Jjl =1+ min(SA[i + 1, ], SA[i, 7 + 1], SA[i + 1,5 + 1]), if z; # ;.
’m+1]:n_i+1 S Mdmsive -2

SA|
SA[i
SA[i
SAn+1,j]=m—j+1

n+i

e What order do I fill the array in?
for\] -w o |

fyr 1=wn + |
e Where is the answer stored?

SAT1]T1)
e What is the runtime?

6 wawv) -
e What are the space requirements? s

e Pt
Gwmm)  Zpsr o B-Heh T O omey I
A|C|IA|C|A|C|T|A
A2 (133 |4 |5 |6 |7|7]8
G|2 |23 |3 ]|4]|5]6]|6 |7
Cl2l1 (2234556
Al3 2 12234475
Clal3(2]1 22334
Als 4321122273
Cle |5 [4a[321]1]1]2
Al7]6 5432|101
81716 |5 (43 |2]1]0

This algorithm is used in computational genetics, which has absolutely huge strings.

e How could one reduce the space requirements?

e Are there any drawbacks to this solution?



RNA Secondary Structure

RNA is a string B = byby...b,, over the alphabet {A,C,G,U}. RNA is single-stranded (as
opposed to DNA which is double-stranded), and loops back and forms pairs with itself. The
“secondary structure” is determined by figuring out what the pairings are.

G
A Cc
S —

; S u &S by lrp by Li Lin
P jh —_——— —
e C A U C G‘ G
/A_ ..... U
A

In reality, how RNA bonds with itself is very complicated. We will simplify it a bit in order
to get an approximation of how the structure will look. We will assume the following 3 rules
are always followed:

e Each pairing is AU or CG.

e The ends of each pair are separated by at least 4 bases: if (b;,b;) € S, then i < j — 4.

e No pairs cross each other: if (b;,b;), (bg, b)) € S, it is not the case that i <k < j <

We will assume that the RNA strand forms the maximum possible number of pairs according
to the above rules.

e What should our first decision be?
Bite size dedBiom £ : Whot (if otk ) coes bi povir wiTh 2

e What information do we need to pass down to the next level of recursion?

@V\A‘)Qam



RN A[i, j| = max number of pairings for string b;b;11...b;.  [x7) DP

e [f we do not pair b; with anything, what recursive call should I make?

P o RNA Lis, )

o If we palr b; with something, how does the number of pairs found change?

RNVAC |, /2= 1t max ( ILNﬁlu—nj k-1) + RNWA LEx, ] [ ))
\t4eks bi be) or
e What Subproblemg (pi (al's dﬂg Wec need to consider if we pair b; with b;?

,(e,:wwf—eol Ly ot Iemr 4 basey
An / Ch

e Under what conditions should we stop recursing?

RNA[i, j] = max(RNAli + 1, j],1 + max;,(RNA[i + 1,t — 1] + RNA[t + 1, j]))

e

base wpse RNAi, j] =0,ifi>j—4 e 110 Smolter T

— T - \
e What choices of ¢ are valid? = Hrizv

(*rqaétej , (Y by) =Au or LG

e What order do I fill the array in?
‘FI( izwn | j;

I
4 - - _
for ];i ton ///"’z? J}R%A\“Js
e Where is the answer stored? é_; /

n+t)

-

RVA T, n)
cuel N
e What is the runtime? - r T AN base (ase
9 U’I;) v -—
A i -7
L)Xxi’ilwr (a"? T/J@I‘.U&%rmt?l ) 74,,5
= G n) RnA DI, )]

= &m‘)



CSCI 270 Lecture 11

Subset Sum

Given positive integers wy, ws, ..., w, and a target W, is there a subset of the integers which
add up exactly to W?

Sample instance: integers = {2,5,7,13,16,17,23,39}, W = 50
feke SL0V, )
. ) (
?
e [s there a subset for the above instance? ot LT, )

e [ need to break this up into bite-size decisions. What should my first decision be?
toke / mt tole
e What information do I need to pass down to the next level of recursion?

+Nﬁ% S fo,(

SS|x,t] will store 1 if you can use a subset of the integers w,, Wy 1, ..., w, to add up exactly
to t. 0 ?f athernite

e If I do not include w,, what recursive call should I make?
5 Txti, + ]

If I do include w,, what recursive call should I make?
68 T xtl, t-Whx ]

If one answer returns 1, and the other answer returns 0, then what should my recursive
function return?

Under what base case conditions do I return 17

A

Under what base case conditions do I return 07

)



SS[x,t] = max(SS[x + 1,t], SS[x + 1,t — w;])
LM@].SShJﬂ:1

conse | SS[n+1,t]=0,Yt#0 . i)
0
e What order should I fill the array?
for x=ntv
fri=0 0 calc STAT]
e Where is the answer stored?
8T, w] w

e What is the runtime of the algorithm?

Gnw)
e [s this a polynomial-running time algorithm?
No (5 W o be +» /wya )

Shortest Path (Again!) 2 AMow "eﬁmve seighT

O 5%4g 2 shortes
¢
/\ , /\-L - Mfulmm

Mfwk loop on the ug?mw ﬂvwr
PNHM

e What is the length of the shortest path from A to C? A %N
e What will Dijkstra’s Algorithm find? A - C

e Why didn’t Dijkstra’s Algorithm work? - % V\cﬁm\lé €d06

@ ®

What is the length of the shortest path from A to C? %/Zﬁ
\V‘('IV\/H‘C laor M ned?wh“vc l/y(/‘e



We will assume there are no negative weight cycles, since this leads to nonsense answers and
situations.

We want to find the length of the shortest path from s to ¢ on a graph with no negative
weight cycles.

e What should my first decision be? whith nede do T Go 12 nexy 2

e What information do I need to pass down to the next level of recursion?
wei?wr
Attempt 1: SP[z] will be the length of the shortest path from z to t.
SP[.’E] = min(%y)eE(c(x,y) + SP[yD
SP[t]=0

Lhen e have @& 2 I\Afw«"fe reansioms
What order should I fill the array?

- Hﬂfj% 2 Ho tme lAwit
Attempt 2: SP[i,z] will be the length of the shortest path from z to ¢ using no more than
1 edges.
SPli, 2] = ming el + SPli— 1,y)
SP[i,t] =0 M'@]ﬂ =21, Na7kf =0
SP[0,z] = co,Vx #t
S M ARE SR oo b oA € L TBR n-
e What order should I fill in my array? for x2gt0 T

e Where is the answer stored? SP Twn-1, 57 e SPTi,x]

e What is the runtime of this algorithm?
6 Cmn)

e [s this a polynomial runtime?

TM ,\,\1,.\;]' = @ ntm)
This is known as the Bellman-Ford algorithm.
(9 timin)

@F‘; @ trmtn)
Djaka: Gcmlogn)



CSCI 270 Lecture 12: Greedy Algorithms

All-Pairs Shortest Paths

We want to find the shortest path between all pairs of points (we’ll return n(n—1) different answers,

one for each pair). Bres Get ol 1p froun ol nodes 1~ ove deshnaion (B[RT S 2)
How could we do this, using existing algorithms? run n +ues BF | once P despvatinr  (Gumn?

We'll instead calculate this more directly, using dynamic programming, in the hopes that we are
able to improve the runtime in some way.

Let ASP[i,x, z] = the length of shortest path from z to z using no more than i edges.
ASP[i,z, 2] = min(, y)ep(c@y) + ASP[i — 1,9, 2])

ASPLY, %,y = cf x e
What should my base cases be? Asp [i.xx])=0

What order should I fill in the array?

Where are the answer(s) stored? ASfin-1] = g T -% lD'me

What is the runtime of the algorithm? G \umny®

(I e Did we net any improvement in the running time? N-
Flond - Wershotd Uwired Bawe B (eouh)

Unweighted Interval Scheduling PBrnte fore Senrch - DP > (Gree

(Gome oritenn, st folle)
We are given n tasks, each with a start time s;, and finish time f;. Find the largest subset of tasks

such that none of them overlap.

f . . . ' .
H ' "
' i .
' ' "
H ' H
'
'
.
- . Q o . . "
. ' -
H ! H
. ' .
. ' . . '
' " - ' '
' ' ' '
' i i '
i i i i
.
; —
'
_ : :
'
P

1

Alwvs sTort vivh ?rady uAtena

i 7]
SEEEEEEEEEEEEE 4§

0 1 2 3 4 S 6 7 8 9 10

e N o o s W N

e What is the size of the largest possible subset? 3, b,§ /1, 4, & / 1,6,8

e Propose a greedy criteria. How should we decide which interval to include next?
Shortert duwntso | eodiert stont twe, fowest witions, eorliesr fmith twe | latelt 1ot twme

e Can you find counter-examples to any of these criteria? R

42 wteved = [ i



¢ Once you've narrowed down your list of candidate algorithms to one, what should you do?

Greedy algorithms are easy to design, easy to write, and very efficient. The tradeoff is that they
also tend to be unclear. Why does the algorithm work? How can you convince someone that the
algorithm is correct?

Greedy algorithms often require a proof of correctness. It is not clear at all that our proposed
algorithm for Interval Scheduling is actually correct.

Proving the correctness of an entire algorithm is rather overwhelming, so it is useful to break it
down. Just as Greedy Algorithms tackle each bite-size decision sequentially, we will prove the
correctness of each of these decisions sequentially, via an inductive proof.

TH Inductive Hypothesis: There is an optimal solution which includes the first & intervals from our
solution.
Owr fm+ k chiicet e N Vigkar" if thee R o ophvupd ol GnsSient vuth these fwn k soltiov

E (, The base case is almost always trivial. Specifically, our base case is k = 0.
Now we need to show there is an optimal solution which includes the first k£ + 1 intervals from our
solution.

What we know:

e There is some interval 7 which is the k + 1st choice in our solution.

e There is at least one (possibly multiple) optimal solutions which include the first k& choices
we did.

e We need to show at least one of those optimal solutions also include 1.
1.5 Assume onr tkt)™ theiie B et v OFT (ARRGE - B 4T Pada 7 i)
Take an arbitrary optimal solution OPT which includes the first & intervals from our solution.
Presumably OPT does not include interval ¢ (otherwise we're done). However, of all the intervals
it does include (other than the first k), there must be one with smallest finish time. We’ll call this

interval j. e &
¢FT OO 21 - O /1
37 vols Who do f; and f; ? — =R nRA, ATIEBYY,
D it vobid ° ~Oé OJf an f] compare OFT |I| IIl :”—J——l% - AT
@ i "(hw'”‘" e How should I transform OPT? R 25 V”_‘_“A
OPT-J+1 =9PT" = we have prved our T-H. 0PT & tewtion of C)H’/h&lnﬁﬂ 2B 3TFT
e What is %he runtime of our algorithm?

9w e 8-9rRAAWE IR Bl WAAWEFTRA
w
Extra Problems:
BN Lire-Size + MmdwChim
e Chapter 4: exercises 3, 5, 6, 7, 9, 13, 15, 24

e Prove the correctness of the algorithms you found, using exchange arguments.
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CSCI 270 Lecture 13: Sequential Exchange Arguments

e There is an optimal solution which includes the first 0 intervals from our solution
(trivial base case).

e Assume there is an optimal solution which includes the first k intervals from our solu-

tion, and call it OPT.
B exdhonge acgument
e Exchange sonie element of OPT with your algorithm’s (k 4 1)st choice, to produce

a new solution OPT’. Figuring out which element to exchange is a large part of the
challenge.

e Prove that OPT" is still valid; that is, our exchange did not somehow break the rules.

e Prove that OPT’ is still optimal; that is, the value of its solution is just as good as
OPT.

e You have found an optimal solution OPT" which includes the first (kK + 1) intervals
from our solution!

e Therefore there is an optimal solution identical to ours! Proved by Induction.

Minimum Spanning Trees (M|$T % LyLs%: B-*# 075 t A 72 -t 2 vearc W‘)
(wndirevted )

We want to prove that Kruskal’s Algorithm is correct, which adds edges from smallest to
largest unless adding an edge creates a cycle. We will call the solution produced by Kruskal’s
Algorithm ‘US".

Base Case: There is an optimal solution which uses the first 0 edges added by US.

Inductive Hypothesis: There is an optimal solution OPT which uses the first k£ edges

added by U5 S_9%% R msT, Gyl kRealy
T.S. Suppose US adds edge er.1 next, but OPT does not include this edge.

e Suppose we add edge er, 1 to OPT. What happens?
Ueate o oyo{ez

e There is some edge ey in the cycle C which is not in US (otherwise we could not have
added eg11). = et munst wst e thow €ue, |, othenite we wonld have chugen ef

e Exchange e; with e, in OPT to create OPT". 0PT- ef tr Cen 2 OfT/

e Prove that OPT" is valid, that is, it is a spanning tree. 3, { "' ¢4 v 5
wo uy(/le J
e Prove that OPT" is optimal, that is c¢(ef) > c(eg41)- voraevted —‘(;L

L ton J‘nsr wie the sther fw’r

S mimminm of wjue



T.5.

— Assume (by way of contradiction) that c(egy1) > c(ey).

— Consider the subgraph of OPT consisting of all edges with cost < c¢(ex1), called
OPT¢

—{e1,e2,...,ext Uer C OPTe.
— {e1, e, ..., ex} Ues does not contain any cycles, so US would have added ey before
€k+1-

— Contradiction: c(ef) > c(ex+1). Therefore OPT" is optimal.
We want to prove that Prim’s Algorithm is correct. We will call the solution produced by
Prim’s Algorithm ‘US".
Base Case: There is an optimal solution which uses the first 0 edges added by US.

Inductive Hypothesis: There is an optimal solution OPT which uses the first £ edges
added by US.
7 o z{®

S o
Suppose US adds edge er.1 next, but OPT does not include this edge. & - primis & Crs
e Faet

e Let S be the set of nodes US has connected with the first k& edges. WA f % Cen
e Add e 1 to OPT to produce a cycle C.

e Since exy; has one endpoint in S and the other endpoint in V' — S, part of C' is in S
and the rest is in V' — S.

e Therefore there is another edge in C, ey, with one endpoint in S and the other in
V-=_S.

o ¢; ¢ {ey,eq,..., e}, otherwise S would be a different set of nodes.
e Exchange ey with ey in OPT to create OPT". OPT + e¥ni - @f - 0/’7"

e Prove that OPT" is valid.
3t B
n-u edges (H 2 -
o (/\7(/16
Conmected  (Con we the rest port of the gyde)
e Prove that OPT’ is optimal.
¢f 7 Cra

othemise, privs adgorithm wodd hawe thasen  Qex)
5 Uhease the smallesr edge to spaa the Tree.



Proof Practice

There are n students and m CPs in CSCI 270. You are forming study groups of size 3, where
each group either has 2 students and 1 CP, or 2 CPs and 1 student. Find a greedy algorithm
that forms the maximum possible number of study groups.

The Algorithm:
If there are more students remaining than CPs, the next group formed should be of 2 students
and 1 CP. Otherwise, form a group of 2 CPs and 1 student.

The Rules:

e Form groups of 2-3 people.

e Prove the correctness of the above algorithm. Your group should write a single solution
on a piece of paper. You do not need to write your names. Feel free to ask questions
of the instructor.

e When time is up, you will pass your paper to the group specified by the instructor.
e The instructor will now go over a correct proof.

e Read the proof you have been given. Write any comments you like. Put a grade on
the top of the paper between 0 and 10 (10 is a perfect proof). Try to consider beyond
whether the proof matches the instructor’s proof, and instead consider whether the
given proof is a valid and rigorous proof.

e Continue to pass each paper you grade to the same group, and continue to grade each
paper you receive, writing your grade and comments next to the ones already given by
the previous groups.

e If you spend less than a couple minutes grading a paper, you're doing it wrong: take
as much time as you need. If you are currently grading one paper, and have at least
2 papers waiting in your queue, dequeue the extra papers and pass them to the next

group.

e If you receive your own paper, you can leave after grading any other papers you've
already received.

e The purpose of this exercise is to read and grade proofs, and to gain a better appre-
ciation of what constitutes an effective proof. The grades you receive on your paper
are of little consequence (you may find that you completely disagree with some of the
comments and grades you receive: this is to be expected).
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CSCI 270 Lecture 15: Scheduling to Minimize Lateness

We have n tasks, task j has duration ¢; and deadline d;. We choose an order to execute
tasks, and we cannot interrupt a process until it is finished. As soon as one task finishes, we
start the next one. If a task finishes after its deadline, it is late. We are concerned about
which task is the most late. We want to minimize how late this task is.

If we start task i at s;, then task ¢ will finish at f; = s;+¢;. The lateness is L; = max(0, f;—d;).
max; L; indicates how tardy the most late task is, which we want to minimize.

Length 1 Deadline 2

Job1[ | |

Length 2 Deadline 4
sz ] |
Length 3 Deadline 6

Job3 | R
Solullon:l : i — .—,,j__;“___ e

Job1: “Job 2: Job 3:
done at done at done at
time 1 time 1 +2=3 time 1 +2+3=6

o What greedy criteria might work for this problem? earliert dendfine, shortest  dmiatioa

§molest- slak font (di- 10
e Can you find any counter-examples to these alf%orithms?

fr (k&rjﬂi—ﬁ/\,\k; i fi 'fz‘ﬁ D0 »® r!k(;:—)f—&-t-ow/y\#im: M ﬁ(,{ 1"7 eoF v | V
Proof: T s S p Y X

By oz 2FmMAeder, Mudash W £7@, A% Monde SE T IR
. For a given schedule S, an inversion is a pair of jobs ¢ and j where d; < dj, but f; < f;.

?N\O\UM W That is, our greedy algorithm says that we should schedule 7 first, but S scheduled j first.

Our algorithm is the unique schedule with no inversions (assuming no ties).
We want to prove that there is an optimal solution which has no inversions.

Base Case: There are C(n,2) = % pairs of jobs, and thus C(n,2) possible inversions.

Therefore there is an optimal solution with < C(n,2) inversions.

Inductive Hypothesis: Assume there is an optimal solution with < k inversions. (Call it
OPT).

Now we need to prove there is an optimal solution OPT" with < (k — 1) inversions.



Note that if you're uncomfortable doing induction “backwards”, you could just as well argue

how many inversions are “missing”. Your base case would be that there is an optimal

solution missing at least 0 inversions, you’d assume there is an optimal solution missing > k
inversions, and then argue there is an optimal solution missing > (k + 1) inversions.  {i’: f;

o | I | e dad ] fo
orT'l 715 | 2 =
Our algorithm schedules ¢ + 1 first, but OPT scheduled ¢ first. We want t0 remove this= Li’ = Ly
inversion, so swap their positions to produce OPT’. This will have one less inversion, which ta#enes

will contradict our assumption if we can show that OPT" is still a valid optimal solution. Toed ) fwizn ot
e (ame +wae, bt

Prove that OPT" is still valid (this one is easy), and prove that OPT" is still optimal (this 7 ha laser

. - D7 has smalle
one is hard). max late F% /B lowenes

D biely’
Li'< \j e veorn

Case 1: there is a consecutive inversion (7,7 + 1).

e Are the latenesses of any task < ¢ changed from OPT to OPT'?
Na

Theefore, Hafd Wweaiin U J)

e Are the latenesses of any task > i + 1 changed from OPT to OPT'?  saw renwved | mamiin sprmeliy
No

e How does the lateness of task i + 1 change from OPT to OPT"?
Smoller

e How does the lateness of task i+ 1 in OPT compare to the lateness of task ¢ in OPT"?

& I 1= fv

0PT | [+ ] 7 N . Li'ngéwuwl’T)
d T | ER lotenesy of T will be
. ! . ? OI’T " ] — ) ) eness o ‘ o
e Why is OPT" optimal? G o(J < i bl
[ Hoabnbblesort ) Q R E I W

oS OPTS € GinstopT)
0P 3 stu a,fﬁw\od
Let (i,i + k) be the smallest inversion, where & > 1. There is a contradiction in this
information: where is it?

case 2 13 ,\»‘170,876\6

Case 2: there are inversions, but none of them are consecutive.
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CSCI 270 Lecture 16: Optimal Caching

A cache can store n items. There is a sequence of m requests dy, ds, ..., d,,, known in advance.
If an item is requested which is not in the cache, it must be brought into the cache, resulting
in a cache miss. You may only bring something into the cache when it is requested. The

goal is to minimize the number of cache misses.
¢ $size of tewhe
k = 2, initial contents = ‘ab’

requests: abcbcaab odine algorivhan

I r-wmj : CMVH mblem o dedt know rﬂ7\4en‘.~',3
e What greedy criteria might work for this problem?

Least freguenr m . Fwthest (FI®
. 7 ﬁmw % fw?wa

e Can you find any counter-examples to these algorithms?

SO0 O D>
SRR S
SLRE&TEQ

e How is this problem different than the standard version of Caching?

A7 & fronve

Base Case: There is an optimal solution that has the same cache contents as we do through
the first 0 requests.

Inductive Hypothesis: There is an optimal solution O PT that has the same cache contents
as we do through the first k£ requests.

Request k + 1 is the first request at which the cache contents of US and OPT differ.

e What must happen at request k + 1?7 There st be 4 cache mizs ot time k+)

(FLPUS Request k 01 0y | 03 | ... de : O‘f do de Peoblem -
Request K+ 1 | dgsq | 02 | 03 | ... At - dirl Ao dle 3 cow be ol ﬁ | oder
7 +wies f=r or7 ond ofT’
(due +o oh?fewd’ Conhe Conteny)
OPT Request k 01 | 09 03 | ... de - d,f do de wokt o exchane 1
Request K+ 1 | 0y | dpy1 | 03 | ... ot oif v Ao 2 v o i:pgh

At request k + 1, US kicks out o1, while OPT kicks out 0. Otherwise, the cache contents
are completely identical.



Let’s look at what OPT does in the future and see when this change in cache contents
becomes relevant. There are many things which can happen for which the change in cache
contents has no bearing. If there is a request on o3, for example, it doesn’t matter which of
o1 or 0oy we kicked out. If OPT removes og for d;, it doesn’t matter which of 0; or o we
kicked out.

e What events can occur which makes the different cache contents relevant?
reiv\uf f°f df , l'tjme)r f?\\ do , OPT wavy remove gt Liwthi OPT%’FT/F/&’X‘TWA
e Which of these events could conceivably happen first? R
requesr f;r oo or OPT remaves 0(][ = 0 N owij cone aboT Hue ]er everst

We will refer to the first of these events as having occured at request j.

Case 1: OPT removes([ﬁ;). ot re?MWf:) 73 k)
il do | e Mavsastieq -9 Yie ob1 7 oy - 35
Request k 01 | 09 o3 | ... ) . ) ,
Request k+1 | 0oy | dpy1 | 03 | ... 2 RI sk FIF#R \‘f\ﬁf’“ﬂyf‘”"ﬂ"ﬁ opimal
OPT

Request j —1 | 01 | dg41 | 03
Request j d; | dis1 | 03

We want to make an exchange, thereby transforming OPT into OPT’. We want OPT’ to
have the same number of cache misses as OPT. We also want OPT’ to be identical to US
through £ + 1 requests.

Af Lo | de

Request k o 03 | 03 | ...

Request k +1 | dpyq | 02 | 03 | ... OPT' cn e whetever T wondts to 7(,7 lef
OPT"| ...

Request j —1 | dgs1 | 02 | 03 | ...

Request j i) 0{,} Jy| -

we on bik ot do = 2[EHE-5H[-H
V-,\_’_

! 0 - R
What should OPT" do at request j* S TR ko T UFM%, Hfmyfﬁ ot %Oﬁ'ﬁ%@m@%

Case 2: There is a request on 0y



df | do | de

Request k 01 | 09 03
Request K+ 1 | 01 | dii1 | 03

OPT

Request j —1 | 01 | diy1 | &
Request j 01 | dis1 | 02

OPT has to kick something out for o9, we will say it kicks out the here-to-fore unmentioned
03.

We want to make an exchange, thereby transforming OPT into OPT’. We want OPT" to
have the same number of cache misses as OPT. We also want OPT’ to be identical to US
through k + 1 requests.

df | do| de

Request k o1 09 | 03
Request K+ 1 | dgi1 | 02 | 03

OPT’

Request j — 1 | dgy1 | 02 | 03

Lone aohecd)
Request j dew | Bl - v me cathe nizs here Hef

e What would we like OPT’ to do this at this request?
bk ont de f'r Af

e Does this break any rules?
AN AR R cahe mas

We will delay the exchange until an event occurs. OPT" has o3, but OPT has o;. The cache
contents are otherwise identical. The possible events are:

e Something (04) is removed for o3. We now plan to kick out o4 at the next event, instead
of 0o3. We avoid a cache miss, meaning that O PT wasn’t even optimal.

e 0; is removed for s methmg We kick out o5 instead. We avoid a cache miss.
'c/’llﬁ nety &A% At ™ Late | HH request oo £4%

® 0 is requested ow we kick out 03 as originally planned. We simply delayed our cache
miss: it occurs for both solutions, but at different times.

e 0P remwyes O for stk ele
we an hawe OV remuwve Oy {orm sm&*"v\lf

0T’ doesny {ollow greedy ARG
5> RAVAWAAY FUF A k) TG ot oprivmod VA AVAL
*MPpt-2 al)‘h\MM >



Divide and Conquer

Divide and Conquer is a runtime improvement technique. Generally, we have a basic
brute-force/greedy /dynamic-programming algorithm, and then we attempt to improve our
performance using Divide and Conquer.

Both MergeSort and QuickSort are examples of Divide and Conquer algorithms. You take
the input, split it into pieces, recursively solve each piece, and then figure out how to combine
the pieces together. Typically the combine phase is the difficult part.

Divide and Conquer recursion is completely different than Dynamic Programming recur-
sion.

e DP is sequential (make the first decision, then recursively make the next decisions).

Divide and Conquer recursion is parallelized: we split it up into several independent
pieces which can be solved in parallel.

DP recursion can be unrolled into a more efficient iterative algorithm.

Divide and Conquer recursion cannot be unrolled in a straight-forward manner (it can
often be done, but it is usually more trouble than it’s worth).



Dvide gnd Co-guer : {mm%e(izerl reCATIioN [ rmntme |\/\A1’ﬂv;l:lf technigne
o reason 10 gor A of eLaB e ppoiied fo other olgoririms |
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getnng il af recasgion = wmndh fm-n—u‘

LA Op 2 ﬁrew:] > AMvide and Congnes
CSCI 270 Lecture 17: Divide and Conquer

Counting Inversions

You're writing the software for Pandora270. A user ranks n songs, and you want to find
other users with similar tastes in music (and recommend music based off these matchings).

Suppose there are 5 songs, conveniently named 1, 2, 3, 4, 5, which I have ranked in that
order. You have ranked them in order 1, 3, 4, 2, 5.

How similar are our tastes?” In one sense, we have only ranked two songs in the same slot.
However, if you look more closely, you'll see we only disagree on one song: song 2.

An inversion is a pair of songs ¢ and j such that one user ranks ¢ < j and the other ranks

¢ > j. How many inversions are there in the above example? , o
<%,3><r.%2 )owr gf’g - Sl h\w\arﬁj
We want to count the number of inversions between two different rankings. For simplicity,

we assume that one of the rankings is the numbers 1 through n in increasing order.

We could just solve this in #(n?) time using a brute-force count. Instead, we will use Divide
and Conquer to improve our running time.

Your ranking:

154810269121137
1548102691211 3 7 (Divide: O(1))
5 inversions | 8 inversions (Recursively Solve! 2f(%))

1. Whats our base case?
me sanﬁ»‘ 0 Mwersim

2. Can we just return 5+ 87
No . Thet can be Mmverians spoan acemss the border.

3. How long does our combine phase take?
g (3)%)

4. What’s the resulting recurrence relation?
ftn) = z{(%) + Gn”)

5. What’s the overall runtime of our algorithm?

@ cn*)
Often your first attempt at a Divide and Conquer algorithm will net no improvement. That
doesn’t mean Divide and Conquer won’t work, it simply means you need to improve a part
of the algorithm.
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1. How can we improve the combine phase?
P@Pfﬂrw] the Mvehwms ( Cortr hile wwbp Mmvedims)
79 % Ry (3RA LM WsA R Wwesim TR
2 merge- sont oand ot - Mrversions
R AT 112, )% #pagsaaniz MW
2. What’s the recurrence relation now?
f«n) = zf(-";) TG wn)
3. Whats the overall runtime?

ﬁcmlojn)

All Pairs Shortest Paths Strikes Back

We want to find the shortest path between all pairs of points (we'll return n(n — 1) different
answers, one for each pair).

Let ASP[i,x, z] = the length of shortest path from x to z using no more than ¢ edges.

ASPli,z,z] =0 Shetert  peth . Gy L
ASP[0,z,z] = o0 UGB I B HTIRE VAR
ASPi,x, 2| = ming ) ep(Cay) + ASPli—1,y,2])

1: Fori=0ton—1 r47

. 7 7
;. For all nodes z A /'\/:

For all nodes x
4: Calculate ASPJi, x, z]

We can argue the last loop takes #(m) time, and there are n iterations for the other loops,

so the runtime is 6(mn?).

e [f we're at node x and we need to get to node z, the dynamic programming way is to
find the next node after x that we visit. What would the divide and conquer way be?
Fnd the middle wode

e Using this idea, what would our new recursive formula be? Base vase . ASP 11, xy] = cost (X

- _ - ]':;_ ) &
Asfﬂh)(,y), ;";;)IASI’I 1 ﬁ,jJ*ﬂler)J,‘ﬂ,ZJJ le ﬁs,hﬁ(e Q;(ia Moy
e What values of ¢ do we need to iterate over? N
7 / -Fr 1=0 v n-|
nv
Pl nodes 2 =) Gwn*y i
e What would our runtime for this algorithm be? for all nodes x

Q «n® dw
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CSCI 270 Lecture 18: The Return of Sequence Alignment

FoL
Integer Multiplicati EQ g
nteger Multiplication (00 D Y=Yy,
1. Elementary Math time! How do you calculate 12 - 13?7 = 1Jb P é ;g 7
‘100
2. How would a computer calculate it? EMN\O 100
IoQ 1 too

. . . . ., - V)
3. What is the running time to multiply two n-bit integers? gn”)

We're going to try to use Divide and Conquer to improve on this.

Let © = xp - 22 + 1, where zp is the ﬁrst‘fﬂ bits of x. Similarly, % =yp-22 +yp.
- o o TR T PR A% O WM G
Ty = Z'FZJF@+ (rpyr + l'LyF)‘?EJ + -TLny( R
/ nbitx nba 2 &1 (Dbirx (2)biv BoTe

1. What’s our base case? mw? 1 L
MI: ZFVF ) f(ti)_" g\v\) :e(v\))
Myz LYu 2. What is the recurrence relation here? ](Lm 47
My (xee¥e) - 3. What would our runtime be? Q%)
et oo | |

4. What part of our algorithm needs improvement? " ~f (2
2 WFur XY = M3-mi-my (gry by - (3TLR ft'i“) "’f %)
5. How can we improve it? Hint: What is (zp + 21)(yr + yr)?

"'XFW‘ + ?‘Lvl,-r 7!;17., + %Lyf
n 3
;737: xw;.z + L’F?L*Xpﬂ};)~) f%pﬂp _"Cw\)_r, 5:’:(%)"’8\"1)
M M; - M- My My , ]C\v\) - 9un loa.,;) ~n 1¥]

The Return of Sequence Alignment

The edit distance between two strings is the minimal distance possible between two strings
after inserting your choice of spaces. Our goal is to efficiently calculate the edit distance

between X and Y. &-”iiT?ﬁfK%%z#?ﬁiw,1#1@%“&'?(37%1 F Tt e
=w
Define: SA[, j] is the min cost of aligning strings ;z;+1...2, and Y;yj+1Ym. (
SAli,j] = SA[i + 1,5 + 1), if 7; = y (%
SA[i,j] =14+ min(SA[i + 1, j], SA[i, j + 1], SA[i + 1,5 + 1]), if x; # y;.
SAli,m+1]=n—i+1
SAn+1,5]=m—j+1 =)
I-’\ J?M

rmnwtwme - (9 wmn)
Spore - “GTrra—

@wm+n)



1: Foralli=n+1to 1
2: Forallj=m+1tol
3. Calculate SA[i, j]

Runtime: 0(mn)
Space: #(mn)

To improve the space requirements, we can toss out old columns when they no longer are
relevant. We keep the last two columns only, thereby reducing the space requirement to
O(m + n) (the size of the input, which you can’t improve on). The drawback is you cannot
reconstruct the answer, which is a deal-breaker for certain applications.

We will instead use Divide and Conquer to get the best of both worlds. The high level idea
is ’g find the optimal midpoint:

" divide x wtv 2 ’Dw-n cd,t))
X o X reanen e R EA e TR T th, 1 HAEMABIE
D mnwmi 2e the swm af +he two FoM}
_ optimalmidpoin\
( - 05N
Kitr 2 Xn

I/’,ovk. k ktl ‘jk-nﬂym N,M
N

M
Run Sequence Alignment on X = rz;1225...2, and all of Y. We save the first column of
data (the column which is calculated last), which tells us the optimal matching of the second
half of X with any possible suffix of Y.

We want to run Sequence Alignment on X = zj..zz and all of ¥ to get the other half of
the equation. We want to find the optimal matching of the first half of X with any possible
prefix of Y.

e If we run this normally, you would find the optimal matching of the first half of X
with any possible suffix of Y.

We'll reverse Y so that we're matching a prefix of Y, rather than a suffix of Y.

This twists everything around, however. The first half of X will be matched with the
mirror image of Y.

We have to reverse X too! Gombme @
O Rh e AT @M sy Fwese s of > pom

%%fﬂ - An - L, runtme - IAA':' Ym “» /-
n . mirnm ERYE
(ERNFEE % A I et S i | o
- 3 N = wwv

e M) .
BV pame . ma >
A ) X X2 %xe % Twmav

spae mtd o REMHFAREBRILR

ZH optimod midpoivct
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divide - A e - 22

mn

divide @ v4. =

Run Sequence Alignment on X = Tnrn_q..T1 and Y = ¢y, Ym_1..-y1. Save the first column
of data (the column which is calculated last), which tells us the optimal matching of the first

half of X with any possible prefix of Y. )
o WA mzd RAEY; 0 €IRAEA)FR TAd

Find the optimal midpoint, and recursively repeat the algorithm! ;

n - LA - ﬂ = :
Gihorwetme s k-3 tmag S e me S mep ke de -k 2t g MY wm-Z

Closest Points on a Plane
nnwhme @ w» ¢ w‘-e-»f m-%\n.. = >wn

Given n points on a plane (specified by their x and y coordinates), find the pair of points
with the smallest euclidean distance between them.

(7 fmd w5 %

15| o
2 IS
o ;

o |1 e

E 5 °

o ;
Poe
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o * i e

1. What runtime can you achieve simply using brute-force? @w?)

2. Using Divide and Conquer, how should we divide the plane? make - 4, -$&%

3. What do we need to do in our combine phase? chek disrance

4. What’s the recurrence relation for our algorithm? fw = >{($)r 0=’ - gy

5. What runtime does this achieve? ¢ ")
Let 6 be the min distance between any pair so far. Instead of comparing all pairs of points
on each side, we will instead only look at points within ¢ of the boundary.
What’s the worst-case runtime for our new algorithm? @w%) #A#n7 A E A £ 2 TREA

Instead of comparing all pairs of points within § of the boundary, wse will only compare

points if their y-coordinates are within 0 of each other. L oe—|— 1 Anas28"

What’s the worst-case runtime now? o’ . Tiﬁ ), ™ “’"":‘w"’ wp > 5D povar m
e . H tHhe wmdiw

toke all 3, st by x> Fenbgn A R

+oke p\j/t‘]‘ Sort Lyv - Fenlbgn) E . .E

https://aaronice.gitbook.io/lintcode/sweep-line/closest-pair-of-points



CSCI 270 Lecture 19: Network Flow
Network Flow

We have a weighted directed graph G' = (V, E), where the edge are “pipes” and their weight
is their flow capacity. These values measure the rate in which fluid/data/etc can flow through
the pipe. What is the maximum rate that flow can be pushed from s to ¢ in the above graph?

Each edge e has capacity c(e). An s-t flow is a function f which satisfies:

mac-velne flow : Max aminat of flow frm ¢ 0 +

HAR# 1.0 < fle) < c(e), for all e (capacity). P/ RETE
/7 \

H3T 2. Y f((2,0) = Xy f((v,9)), for all nodes v — {s,t} (conservation).
Swm of Mmumivg fow = sum of ontgony flow
The value of a flow is v(f) = X5, f((s,7))
D414 =0

=) 'fIIY Fhw

8 - sink

S A48 TR ot set

Minimum Cut Ftiatn ;]

An s —t cut is a partition of the nodes into sets (A,V — A), where s € Aand t € V — A.

The cutset is the set of edges whose origin is in A and destination is in V' — A.

The value of an s — t cut is equal to the sum of the capacities of the edges in the cutset.

Problem Statement: Find the minimum cost s — ¢ cut.

1. What is the value of the mincut in the previous graph? |

2. Anyone think this is a coincidence?

Mt qa cwmddeace



Weak Duality: Given a flow f and an (A,V — A) cut, v(f) < the value of the cut.

Corollary to Weak Duality: If v(f) = the value of the cut, then f is a max-flow, and
(A,V — A) is a mincut. vehme of- oot JRG vnow ~flou Ry LR

The remaining question is, can this always be done? Is there always a flow and cut with
equal values?

Let’s try to solve the max-flow problem using a greedy algorithm. We’ll just choose arbitrary
s — t paths that have a remaining capacity, and route as much flow as possible along this
path.

Given the original graph G, and the flow so far f, you can construct the residual graph Gy,
which contains two types of edges.

iven pwirent oW

p Glf (S s»>B=4»1:2[5)

%/jlllb’ﬁ’f}/ B9 no mere -t PWH\

e Forward edges (u,v), which have capacity equal to the original capacity ¢(u,v) minus
the flow along the edge f(u,v). CGp(ewvs) =Ccau,v>) -f<u,v>)

e Backward edges (v,u), which have capacity equal to the flow along the edge in the
opposite direction f(u,v). CF €n, V)= f(< v, 1)

Forward edges indicate you can still augment the flow along that edge. Backward edges
indicate that you can “take back” your choice to push flow along that edge and find a better
solution.

Why was this a valid thing to do? Are the two rules of flow maintained if we push flow
“backwards” ? i%i7h%ng take IfoS bouk ?{‘}_%,#Tki redireur M,fM/(?\«J’TM" flow, fﬁﬁi?ﬁi

IV
(D The Ford-Fulkerson algorithm looks for an augmenting path on the residual graph (that
is, a path from s to t where you can push more flow), pushes the maximum possible amount
of flow along that path, and repeats until there are no more paths.

Augmenting Path Theorem: f is a max flow iff there are no s-t paths in GY.

(9 Max-flow Min-cut Theorem: The value of the max flow equals the value of the mincut.
/ %ﬂ?%)%/b 'Zjﬁ'@ 1)
H¥iL
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We will prove the following three statements are equivalent:
TYR % ong %r reah thr capauity
1. There is a cut (S,V —S) such that v(f) = the capacity of the cut.
- vadme of wdt = Yadne af flow

':)V\/lw(‘f'\ow , w1 ong

L2721 5%0h]:

2. f is a max flow.

3. There is no s-t path in the residual graph G.

1 — 2: We've already proven this.

2 — 3: Proof by contraposition. If there is an s-t path in G, then we can augment the flow,
which means f is not a max flow. =3 — =2, which means 2 — 3.

3 — 1: Let f be a flow with no augmenting path. Let A be the set of vertices reachable in
Gy from s. Note that s € A and t € V — A. This forms a cut of value equal to the flow!

Thus Ford-Fulkerson optimally solves Network Flow.

Algorithm for Min-Cut

1: Run Ford-Fulkerson on the graph.

2: Create the resulting residual graph Gy

3: Let A = the set of nodes reachable from s in G
4: Return (A,V — A)

Integrality Theorem: If all capacities are integers, there is a max flow f where every value

f(e) is an integer. (A & v4 ) push mow flow, Fqu-BH % %% )

Let’s analyze the running time of Ford-Fulkerson. The capacities of edges will be integers
between 1 and C'.

Mok (aponm
1. Each time we do an augmentation, what is the minimum amount the total flow increases

7

by? | Fr evey <1 poth, pushes 7| wad flow
2. How many total augmentations might we need? wax flow € n ¢

COFS 6sSwme  Connered
3. How long should it take to find an augmenting path? Bimgw) = Gum)
4. What is the runtime? @umn() went: repeat fvd - poitn ond push ome flow eoh twme

= Qwm-n0) N C socth ™
5. Is this a polynomial runtime?rgwm Pﬂhjwvw‘d p/%g w\:wfush ¢ tnes « P frd the | ne tiwmey,
6. Is it actually possible for the runtime to be this bad? Tes

044 MOX = CapouiTy ST pocth C Vo ki D']"“"’"‘)
7. Any ideas on how to improve our algorithm? . BFS
® Gt st porh fewesr edger CBFS)

g Pmsh I flow -ﬂw.»?bu the widdite poth eoh e
\({ ond  wtnke that lf—iowfnm*rhwl FWH,‘

rQ,PW
2 Qum-nC)




Recap -
- erftow:
o M- ¢ dmal )
o bord- Fbkertm = ruime - B ) psends-poly
° mprivement 2

Choose a fwﬁn With Mo wfmﬂv

Chwose @ ‘w\ﬂ\ with -(ewesr ep{7e

Unvase @ |>wrh with l’iﬁ Wu?h mfa,u"b > co\famﬁj-jcdﬂﬂj



Fmd o cwitably —lw7a ST poth

Capacity-Scaling
7R 2o Phedge
Let Gf(A) be the subgraph of G consisting only of edges with capacity > A.

What would Gf(A) look like for this graph if A = 167 WLj > edge Shew wp

Are there any s — ¢ paths on G¢(16)? o

What would G£(8) look like?

Are there any s — ¢t paths on G(8)? \9@3

What does G look like after we've augmented the flow? o

What does G¢(8) look like at this point?

What does G¢(4) look like?

2ty 5 )
Ford-Fulkerson With Capacity-Scaling

S 4—..§ 1: Let .A = 2¢ for max 7 such that A < C.
e, 24o8 <) 2: While A >1
s Augment the current max flow using Ford-Fulkerson on Gf(A).
4: A=5

2

Now we will analyze the runtime of our algorithm.

We'll refer to each iteration as a phase. We need to figure out how many phases there will
be, we need to figure out how long it takes to find a path on Gf(A), and we need to figure
out how many paths we might find in each phase.

e How many iterations will our algorithm have?

‘9710



At the end of O sScale f)hase £
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) (with max flav) N
e How long does it take to find a path on Gf(A)? Why? total runbime . byl 2w

So now we have to cap the number of paths we find in a phase.
Let f be the flow at the end of an iteration with A-scaling.
Let S be the set of nodes reachable from s in Gf(A).

Now consider Gy, which has additional edges of capacity < A.

e Consider an arbitrary edge passing from S to V-5 on Gy. What is the max amount of
flow we could push along this edge?

e How many edges could pass from S to V — 57 wm

e How much flow could we conceivably be missing at this point in time? M- (a—\)

Remember, we just finished the A-scaling phase. So in the next phase, we will consider

G (3)-

e Suppose we find a new s — t path when considering GG f(%). What is the minimum
o)

amount of flow we will be able to push along this path? 2. -« Qf(%) <5l
>

e How much flow did we say we might be missing at this point in time? oM™

. . . -\
e How many paths can we find, maximum, during this phase? @T)b-

—J
-

Runtime for Ford-Fulkerson with Capacity-Scaling is #(m?log C). Is this a polynomial run- Yes
time? total mwfime: b4Cmm cgmibge Fo\,jwm;ai

Other network flow algorithms:

e Preflow-Push = O(n?)

e Goldberg-Rao = O(min(n3,m2)mlognlog C)

A o4 of provlems con be * redmeed '+ mox-flon
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CSCI 270 Lecture 21: Poly-Time Reductions

Minimum Cut(Graph G)

1: Find the max-flow f and the residual graph Gy
2: Find the set of nodes A reachable from s on G
3: Return A

What is the runtime of Minimum Cut?

The runtime of Minimum Cut depends on the runtime of Maximum Flow! If someone finds
a better Max-Flow algorithm, they will simultaneously improve the best known Min-Cut
algorithm!

Min-Cut is not the only problem like this. There are a lot of problems for whom the runtime
bottleneck is Max-Flow. This is why the research community has spent so much time trying
to improve the existing Max-Flow algorithms.

This is called a reduction. In a reduction you take a problem you do not know how to
solve, and turn it into a problem you do know how to solve.

In a poly-time reduction, the reduction takes no more than polynomial-time. This is
also written: MinimumCut <, NetworkFlow. Or: Minimum Cut is poly-time reducible to
Network Flow.
A :‘,B ‘A yw\»\ew A con be reduweed 4+ anther Fnblm B m fe'»y—-mw\e I;mzm\r:r
o If A<, B, and B is poly-time, what can we state about the running time for A?
A can be solved poly - ame
o If A<, B, and A'is poly-time, what can we state about the running time for B?
Nty com be said abat B

So, by reducing Minimum Cut to Network Flow in polynomial time, we have proven that
Minimum Cut is also solvable in polynomial time!

Now that we know Minimum Cut has a polynomial time algorithm, if we can give a poly-time
reduction from some problem X to Min-Cut, we can determine that X has a polynomial-time
algorithm as well.

Let P be the set of problems with polynomial time solutions. If we want to show a problem
is in P, we either write a poly-time algorithm for it, or we reduce it to a problem we already
know is in P.

P wl> - rone - (polgh\/\,\e

d
po\ywne



Bipartite Matching

We are given an undirected bipartite graph G = (LU R, F).

At ca,fm,ﬁj B

F R capowity 10
ARV

hoamve rewive we 90:7

L R L R

M C FE is a matching if each node appears at most once in M. Find the max-size matching.

e What is the largest-sized matching you can find?

e Why can’t there be a larger matching?

A perfect matching includes every node. This instance cannot have a perfect matching.

We could try to come up with our own algorithm to solve this problem, but that sounds
like too much work. Instead we’re going to be lazy, and use an existing algorithm. Namely,
we’ll use Ford-Fulkerson.

To use Ford-Fulkerson, we have to transform the current graph into a network flow graph.
In addition, it must be done in such a way that the solution to the network flow graph helps
us find the max-sized matching.

e What components are missing in this graph, which are needed in a Network Flow
WA graph? £, V. U‘f’“fﬂy

D
-(fm;f.rw\f\ﬁwl e How should we transform our graph into a Network Flow graph?

Qwmtwn)
e How do we extract the answer to Bipartite Matching once we’ve solved Network Flow?

@
et in _ —Flows frova
o) = Mox-flow froms 4 ¢
So, by reducing Bipartite Matching to Network Flow in polynomial time, we have proven

that Bipartite Matching is also solvable in polynomial time!

Now that we’ve reduced Bipartite Matching to Network Flow, Bipartite Matching is a valid
problem to reduce to as well. You could reduce some new problem C' <, Bipartite Matching
to show C' is poly-time solvable.

plg-tPne GmnC) =@ aman) - PAIRYE ackpr -V -PARALF-RA)
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Circulations

We are given a directed graph G, with edge capacities c(e), for all ¢ € E.

Each node has an integer demand d(v). If d(v) < 0, then we say that this node has a
supply.

A circulation is a function f which satisfies:

1. 0< f(e) <cle), for all e
2. Y [(2,0) = Xy flv,y) = d(v)

< vValid anmsuer

Is there a circulation that satisfies these constraints? lﬂ%

What components are missing in this graph, which would be needed in Network Flow?

What components are in this graph, which must be removed in Network Flow?

How should we transform our graph into a Network Flow graph?

e How can we extract the answer for Circulations, once we’'ve solved Network Flow?

s, ¥ T Mrm edge M2, FTRHT B

tramspromafio ;. 0o

© -~ s modes | 0= Cuppy)
demand nides > @, € = demond

extNertion ; B (m)
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Circulations with Lower Bounds

Suppose edges have lower bounds [(e). The new capacity rule is: I(e) < f(e) < c¢(e)

?i 4’(? Uradabion of lowerbonnat <p UYordatiom
= FIFi IR sk O netfls © mm-ont @ Liporfie -mutvhag
62)_7 ® Uridatim @ uradetion wirh lower bownnd(

Is there a circulation that satisfies these constraints?

What problem should we reduce to? (Hint: NOT Network Flow!)

What components are in this graph, which must be removed?

How should we transform our graph?

e How can we extract the answer for Circulations with Lower Bounds?

You may reduce to Network Flow, Bipartite Matching, or Circulations with or without lower
bounds. You may reduce to other problems in P as well, but this is a unit on Network Flow,
so it will be most fruitful to focus on those problems.

Important: don’t mix up your problems. For example: Network-Flow with lower bounds is
NOT a problem we have shown to be in P. You must do Circulations with lower bounds, or
Network Flow without lower bounds.

Extra Problems:

e Chapter 7, exercises 8, 11, 12, 14, 24, 27, 29

e Challenge problems: Chapter 7, exercises 22, 41 o~ ?g]%ﬁ& 18 By tromdatim
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CSCI 270 Lecture 22: Poly-Time Reduction Examples

Survey Design

There are n customers {ci, ...,¢,} and m products P = {p1,...,pm}. Customer ¢; owns a
subset of the products S; C P.

We want to design a survey which gets feedback on all of our products: we must ask at
least gp; questions (to get meaningful feedback) and no more than gp, questions (because
the questions would become redundant) about product p;, and we can only ask questions to
customers which own p;.

Lastly, we must ask at least ¢p; questions to customer i (to avoid wasting their time) and
no more than cp) questions (to keep the survey a reasonable length. Give a polynomial-time

algorithm to design such a survey or find that no such survey exists. I AGT ) 1A T RT pj A T=) 2

ot by ma/#-hj a groph
e What problem should we reduce to?

@

e How should we transform survey design? sz -

e Are there any problems with the tra,msformatiofi{“f}'g ¢
7r!;‘<v@ ¢ F» 7 B damand
e How can we fix this problem?

19 S ma demand = ¢ B9 Supply

D 7+ edge from ¥ TS 2 Bh uTwdation
wirh lover bovnd
@ 3)%7? Max-flvt) 6 &t md@w\M =0

(1 Lbwerborad 4(/7;)% 3?) ?Eﬁf"’“ L o.d?e ﬁ“"‘ 18 'Mﬂﬁof question aubed




Figure 1: XKCD #1593 . The thrower started hitting the bats too much, so the king of the
game told him to leave and brought out another thrower from thrower jail.

Baseball Elimination

Team Wins | LA | Col | SF | Ari | SD
Los Angeles 90 0 0 0 |7 4
Colorado 88 0 0 0 0 1
San Francisco | 87 0 0 0 0 4
Arizona 86 7 0 0 0 4
San Diego 75 4 1 4 |4 0

You want to determine if a team can end up with the most wins at the end of the sea-
son (or tied for most wins, forcing a playoff).

e Which teams are clearly eliminated?

e There is another team that is also mathematically eliminated: which one?



We want to design a poly-time algorithm that determines whether a specific team has been
mathematically eliminated. For this example, let’s consider San Francisco. It’s not clear
off-hand which problem to reduce to, but that’s not an issue, because they’re all graph
problems: we can start by creating a graph and then decide which problem we’re reducing
to later. The flow will probably indicate who wins which games.

e What nodes should we add to this graph?

e Should we include San Francisco in our graph, or do we already know how to allocate
their games?

We need to make sure that only teams involved in a matchup can win that specific game.
We'll therefore add a node for each matchup.

e How should we finish our transformation?
e What problem are we reducing to?

e How do we extract the answer?

Project Selection

We have a set of n projects P = {p1,...,p,} with values vy, vy, ...,v, (the values may be
negative).
(Co-reqwisi+e) 4 de st do alf mder M the myde
Project ¢ has a set of prere?luisites S; C P. A AR “
If we decide to do project i, we get value v;, but we must also do all projects in S; (and some
of them may have negative values). maoke  all pre-repuitide - wwWSL PR
> 44 | oAk pmtfw?mmwf}im ({27 wrz o)

Find max-valued subset of projects to do. > Ea+ OB RS pers (T AT H)s T ed7¢ 7% uor

0=2.9 =P SB S BmTh e )

vy =—3,5 =P, 4 Fo\wmtf to Prv}%'n - 3 “D w\

U3 i 5,53 =P, Py wirh mszh\/& vodme, @ 3 @‘@ 41;_3« P,,.ZJIG& Ps (425
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e What is the total value if we do all projects? M= Ot ¢ oot ’ml,lw

ot h ]
e What is the total value if we do no projects? & T—w
e -
e [s there a better subset of projects? 2 parts . projevtt e o

0% lloﬁ'ﬁve rolwhion . P, P t’}, P‘-(' projets we clarit
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e We need to turn this into a graph. What should the nodes be?
e How should we encode the prerequisites?
e Would Bipartite Matching be a good problem to reduce to?

e [s there any problem with network flow?

e Would Circulations with Lower Bounds solve this problem? # ny . - &k a])‘ﬁ P kst

e Are there any problems left?
e How do we make sure that we don’t select a project without its prerequisites?
e Which set specifies the projects we do and which we don’t do?

e We need to add edges from s to certain projects. If we split one of these edges, what
does that say about the project?

e We need to add edges from certain projects to ¢t. If we split one of these edges, what
does that say about the project?

e We need to add the appropriate penalties to completing a project with negative value,
and appropriate incentives to completing a project with positive value. How should
we go about doing this?

Proof of correctness:
For every project with negative value in S, we increase the value of the cut:
Zi€5’7pi<0 —Di

We find a min-cut (S,V — S). For every project with positive value in V' — S, we increase
the value of the cut:

2 ieV—Sp;i>0Di

Therefore the value of the cut we find is

2 ieV—_8p;>0Pi T 2icS p;<0 —Pi

Let C'= };.,.~0pi: the sum of capacities of edges outgoing from the source. Then:
ZieV—S,p»o pi=C— ZiES,pi>0 Di

Then the total value of our cut is the sum of these two values:

C = Yiespi>0Pi T Liesp<o —Pi = C' = Xies Di-

Since Y_,cq p;i is exactly our profit, if we minimize C' — ;. g p; then we maximize our profit.
Thus, finding min-cut here really works!



CSCI 270 Lecture 23: The Limits of Knowledge

Independent Set ()

Given a graph G and an integer k, is there a set of nodes S C V such that |S| > k, and
there are no edges between two nodes in S7

1% éf Ls
LS £ VU

Vertex Cover ( swastlest)

Given a graph G and an integer k, is there a set of nodes S C V such that |S| < k and every

edge has at least one endpoint in S7 veeb if ve have an clgorie i 5,
G- sets ve widtd howe an elgorithun fvr ve
= S0 (sett)
- ’ ’ Ce we oot hawe an p\lga,—ﬁ'lw.,‘ ‘ﬁ;y— S
Set Cover O = o , We doit have an Mjﬁmm for ve
rehiam and’

We are given a set U of n elements, and m sub]%ets S1,/59, ..., S, C U. Given an integer k,
is there a collection of < k subsets whose union is equdl to U? Ve Y \Ly,d, 4T, b 3

Sl = {172}7 SQ = {27375}7 53 = {2a4}784 = {475}7 ‘95 {376}756 = {576}
Wl Wont 1o shw set cwver i3 hard L_7 shawavy Ve <p SC A rnode - ser eo(?e - dement
(_}mabe the set rwer U

T i de Wiv e < L?ﬁVmeHJ)
The class NP ™M e = Unaarvp the node e ot edoes

Suppose you have an Independent Set example which you have been unable to solve. Albert
Einstein walks in, looks at it, and say “Yes! There is an Independent Set of size k, there it
is!”

How long would it take you to verify that Albert Einstein’s answer is correct?

Suppose Einstein did the same for a Vertex Cover or Set Cover problem. How long would it
take you to verify his solution is correct? 0 (v



A verifier/certifier is like a grader. It does not come up with a solution on its own. It just
verifies a given solution is correct.

P is the set of all problems with polynomial-time solutions.

NP is the set of all problems with polynomial-time VERIFIERS. @ NP
P=Polynomial Time

NP=Nondeterministic Polynomial Time

Effectively we are saying “If we could guess the solution, we could verify its authenticity in
polynomial time”.

What problems have we seen that are in NP?

Is Sorting in NP? Y& S ¥]y

Is PC NP? ye

Are there problems which are not in NP?

Is PC NP? mysten) ( we think 4% °% tme)
g

Alright, let’s suppose we want to prove it one way or the other. Here is a possible strategy:

1. Identify the “hardest” problem in NP.

2. Either give a polynomial algorithm for it, or prove no polynomial algorithm is possible.

It’s not clear that there is a “hardest” problem in NP, but we should be able to formally
define what it means to be the hardest problem in NP. What kind of traits do you suppose
such a problem would have?

Vzene Z <, hardesr  prblem
(E/Venjﬂuvy B rednuble ™ the hador |>V~HW5

(pok-Levin Theoren, wdzj 0'¢



Figure 1: Futurama, depicting P#£NP.

Figure 2: The Simpsons, depicting P=NP.

Circuit-SAT

Given a combinational circuit of AND, OR, and NOT gates, is there a way to set the inputs
such that the output is 17

Is Circuit-SAT € NP?

Claim: For any problem z € NP, x <, Circuit-SAT.



x1 x4
X2 >—
E x6
x3
x5

e A Turing Machine is a simple mathematical model of a computer. Anything a computer
can do, a TM can do (but slowly). TMs are not real things, they are a theoretical con-
cept. Because they are simple, we can formally prove what kinds of things computers
can and cannot do.

e A nondeterministic computer is another theoretical concept which does not actually
exist. It is effectively an infinitely parallel computer which can try all possible answers
simultaneously. Thus, any problem in NP can be solved by a NTM in poly-time,
because all it has to do is verify every possible answer in parallel.

e Computers are just circuits. It stands to reason then that we could take a TM and
translate it into a circuit which contains the exact same logic.

Effectively: any problem in NP can be reduced to Circuit-SAT in poly-time.

Circuit-SAT is what is called an NP-complete problem:

1. Circuit-SAT € NP

2. For all x € NP, z <p Circuit-SAT
Suppose we have another problem Y, and we show:

1. Y e NP
2. Circuit-SAT <, Y ({0333 €AY W9 A, RMEM Y Grai- SAT)

What have we shown? \[ N alse WP - wmlem ‘sw\,lem

Suppose we have another problem Z, and we show:

1. Z € NP
2. 7 <p Circuit-SAT

What have we shown?



CSCI 270 Lecture 24: NP-Completeness

3-SAT

We have a set of n variables z1, xs, ..., x,,, and a set of m clauses C, Cs, ..., C,,. Each clause

is a disjunction of exactly 3 variables or their negation, such as Cy = (z1 V —22 V 24).
WF C onjusive ponmal forms) (VY VIALVVIACYY)
A 3-SAT formula is a conjunction of all clauses C; A Cy A ... A C),, such as:

(1 Vo Vay) A (g VgV oxy) A(mxyp V oz Vag) A (5 VgV —ry).
We want to know if there is an assignment of boolean values to variables such that the
formula evaluates to true.
e [s there a satisfying assignment for this example?
¢ [s3-SAT € NP? ver  (hun though the fanda t= verify)
e What’s wrong with the following reduction? ~ 4r&vt o <p 3-4AT
Rk B 3-5AT B Srwait a7

a I8 drmta; W 3-6AT R 1)
x1 x4
x2 )—
| x6
x3
Reduction from Circuit-SAT to 3-SAT:
lnm-gm-& :
1. Add variable names to every wire in the Circuit-SAT problem. As =N
- W - $AT MasE R A ovuis - CAT R - 34 (X ATTKT) V (KD A XS

2. Hard-code output: C7 = (xg) =( X6 V Kb V Xo) K3V k) A (S %3V KT

T
¢ 3. Transform not-gates. x5 = —x3 becomes Cy = (x3 V x5\§xand C3 = (mx3 V —25)y = %5

Homslot-e . Yy = B BT =) Ke
_é. Transform or-gates. x¢ = x4 V x5 becomes Cy = (xg V —z4) and C5 = (x4 V —25) and

emh gaie Xy
29 @ (: (;%v?v—ff))x VOUREA (Re VI V(T XA B AT ET)
u +m 2R Ry) 2 KE
F 190 Unie Vi B “Transform and-gates. x4 = x1 A 1y becomes C7 = (x4 V 1) and Cg = (—a4 V 73) and
09:(.7:4\/—\.7:1V—\x2) G M =) 7 By
= ™ > Ky

6. What’s missing in our reduction? XiA ¥» =2 ¥y



Independent Set

tromsloe  lgn frmuda wis o G0aph
We know IS € NP. Now we want to show that 3-SAT <, IS. Turn an arbitrary 3-SAT instance
into an IS problem. e Fn Vo Nk

(_LTl V T V J]g) A (IEI V ) V Ig) A (Z‘l V T2 V _|CL’3>

1. Add 3 nodes in a triangle for each clause.

2. What’s missing in our reduction? G C~ Gy

de per clawnse
3. How many problems have we shown are NP-Complete? veed + il e nede p

1% AR T 2 - AT i AE (o AKRY) AR k)
Remember, this example is only an illustration to clarify my proof. My proof must work on
all 3-SAT instances, not just this one!

There are a lot of NP-complete problems. This is why we highly suspect that P # NP. All
we would have to do to prove P=NP is come up with a polynomial time algorithm for one
of these problems. With how much effort has been expended, we probably would have done
so by now if it were possible. Proving that no polynomial algorithm exists for a problem is
much much harder.

Set Packing

Given n elements U = {uy,us, ..., u, }, m subsets 51, Sa,...,.S,, € U, and an integer k. Are
there k sets which don’t intersect?

Think about the similarities between the problems. In Independent Set we are packing as
many nodes as we can such that no edge is represented twice. In Set Packing we are packing
as many subsets as we can such that no element is represented twice.

k-Clique

Given a graph and an integer k, is there a set S of > k nodes such that every pair of nodes
in S have an edge between them?

There are a lot of NP-complete problems. This is why we highly suspect that P # NP. All
we would have to do to prove P=NP is come up with a polynomial time algorithm for one
of these problems. With how much effort has been expended, we probably would have done
so by now if it were ﬁpossible. Proving that no polynomial algorithm exists for a problem is
much much harder.” £ w?

Ts <p k-ob?vtnc“/(;u ?:V”m%eo(ge%,‘/; , k‘([/icln&jfﬂﬁ%ed?emi)
mvest ald e,dgq of T5. fd k- cligne o4 fir the new 9rop h

ger e o -far 4

-G%shew € NP D NP Lowrle)l-ﬁ



CSCI 270 Lecture 25: Sequencing Problems

pHed
Directed Hamiltonian Cycle €& Wf

Given a directed graph G = (V, E), is there a simple directed cycle C' that visits every node?

e, HRA-RARD B Y asbabelid] e
_ FAMC, 2137 D DHC € N,
i Hoidd danmse 1 clause 1 | »Ziiha- % f

» 3-4AT éP pHC

2 3-SAT +TH kA
Buffer Mode 4R "

42 danses 75 7).

R B Y, buffe nolbd B

A

2 onC TA M

%4 Buffer Mode

= ¥ dawe X2 %%
FKMNAL

%3

Undirected Hamiltonian Cycle

Given an undirected graph G = (V, E), is there a simple cycle C' that visits every node?

VRCE LY/ B
%-%: UhC & NP

s
=% DRC <, uHC

Tum Krevred +0 Uadireaed -
g bW sprr ]

For Fw\a\em 2: doBMmomrd My
ERATA L R T

Bk fip )



Travelling Salesman Problem

Fwat Undirguted Haniltosion Cyde of weight =D

Given a set of n cities, a distance function d(u,v) which specifies the distance between any
two cities 4 and v, and a value D, find a tour of length < D.

From the comic XKCD: ;lf:;,b) vdib,er>dia,c)
&1 ogae HLZRBHL

Y YNAMI i .
BQSgLTLE)‘If(g?\JCE PDROGR%‘?MING SELUNG ON EBAY: (B2 PRTF:11)
| ALGORITHMS: 0(1)
0(nt) O (n22") rop enp
STILL WORKING UHC =, TsP
ON YOUR ROUTE? ‘
\ I D: n For iomgle propety
ABBWTLR2
oD Bn%nin,
SHUT THE < FAE & weighr =2 R
HEW VR 0

> TSP € AP wv,:lel-e

Directed Longest Path

Given a directed graph and an integer k, is there a path of > k£ nodes?

Undirected Longest Path

Given an undirected graph and an integer k, is there a path of > k nodes?

What makes a problem NP-complete?

How does one recognize an NP-complete problem? You can’t until you give a reduction. It
is very difficult to tell at a glance.

Longest path is NP-complete.

Longest path on a DAG is easy!

3-SAT is NP-complete.

2-SAT is easy!

Independent Set is NP-Complete.

Independent Set on a tree is easy!
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CSCI 270 Lecture 26: Numerical and Partitioning Problems

Subset Sum (%) DP: pevedo- pstgamnnl

Given n positive integers wy, ws, ..., w, and a target W is there a subset of integers which
add up exactly to W?

X x2 xa C G G G Ta Pwv& 556 /VP' G'W\P'm

T DR

U; - 1 0 0 0 1 1 0 )) B'QAT 5'7 CS
e e P T S -
v2 U | o | S (oA V| b S Fed ek G_ 1% b G
T ™ T R R AR v At TR
O 8 =0 0 0 1000 Utak Wmim nwnben
Buffer , i 77%1»&:.»} ‘
- ¢ Beprment (e (Y2 0 "0 eCarh neaber W be nim iz
‘Nsmhf\o
@ Ly FREEEOE RO 0 X om E G O Oy G
¢ (SR T, ., o o 1
(N i o e 0 ) T e e R Joe | i1 o o 0 ! I 9
7y |l o 1 o 0 o 0 I
W s = 0 0 0 0 0 0 1 | 0 9 | :’ \ ?
) ¢ ™lo o Y |
o SIS 20 ) L .
t o= 1 1 1 ; L o
Bhﬂ'&.r = O, (:'7?31&4’ K/ 2" \7}'%&3—)
*, %, %y TR o AY
3-Color

& 43

= 0

3 v > SATR B & sSTHH

Given an undirected graph G = (V, E), is there a way to assign one of 3 colors Red, Green,

and Blue, to each node, so that no two adjacent nodes have the same color?

O -

R ADT B £ b-color, A4 L- $ATARY
() False -ﬁlm)

(KWVEIURY ) A=

Broutly me tre e folse
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4-Color

Given an undirected graph G' = (V, E), is there a way to assign one of 4 colors Red, Green,
Blue, and Purple to each node, so that no two adjacent nodes have the same color?

MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

; Y $15.
CHOTCHKIES ResTavrnsT oRnLF eI A
l . EXACTLY? UHA...

<« APPENZERS ——

MIXED FRUIT 2.15 HERE, THESE PAPERS ON THE KNARSACK )
PROBLEM MIGHT HELP YOU OUT
FRENCH FRIES 275 \ LITE, 1 HAFE S OTER
TABLES T0 GET T0—
IDE SALAD :
SIE S5 — A% FRST AS PUSSIRLE, OF (OURSE. WANT
HOT WINGS 3.55 SOMETHING ON TRAVELING SALESNAN? /

MOzZZAREUA STICKS  4-20

i N\

—— SANDWICHES ~—
RARREALE (<A~

éﬁ 3-D Matching

Given n instructors, n courses, n times, and a list of 3-tuples listing valid pairings of courses,
times, and instructors, find an assignment where all instructors teach, and all classes are

taught at different times.
(Aaron, 170, MW 2-3:20), (Aaron, 170, TTh 11-12:20), (Aaron, 270, TTh 11-12:20)

(Tian, 104, MW 2-3:20), (Tian, 170, TTh 11-12:20)
(Brendan, 104, TTh 2-3:20), (Brendan, 170, TTh 2-3:20), (Brendan, 270, MW 2-3:20)
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CSCI 270 Lecture 27: The Limits of Computation

Suppose you are given some computer code, and the input which the code will receive. You want
to know whether the code will halt, or enter an infinite loop.

Compilers can catch some very simple examples, but they can’t catch the more complicated ex-
amples. It would be great if someone clever enough came along and wrote a program which could
solve this problem. Why do you suppose no one has done this?

This problem is referred to as the Halting Problem.

The Barber Paradox

There is a barber in a small village. The barber cuts the hair of exactly the villagers who do not
cut their own hair.

e What is the paradox? who urs the barbers hair?

o Is this really a paradox?

An algorithm that solves the Halting Problem is the “barber”. If we assume such an algorithm
exists, we reach a paradox. The only conclusion is that such an algorithm cannot possibly exist.

Countable versus Uncountable
Consider two sets of numbers: the set of natural numbers {1,2,3, ...}, and the set of even natural
numbers {2,4,6,...}. Which set is larger? ‘fh‘) Z 32X

Given two sets of infinite size, A and B, if there is a bijective function f which maps A to B, then
these two sets are the same size.

In less formal terms, if you can pair each number in A with a unique number in B such that every
number in B is paired exactly once, then A and B have the same size. Any infinite set of size equal
to the natural numbers is called “countable”.

Wn ount able Ff size > natwad nuwbes

e Are the set of even integers countable? Yes
e Are the set of positive rational numbers countable? Yes

o Are the set of real numbers countable? Ny

AlGorthan  ove wwntable
Prblems ore wnonnrable > Hﬁaﬁ'l‘v\ms)
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Proof by contradiction: assume we have a bijective function f which maps A (the set of natural
numbers) to B (the set of real numbers). It might be (for example) that:
P radioand ramber (KR AHR)

D=n 3Miriss bA frh9g 1B -izd 2 %3
=e ».‘,)hg (bacbes )

Now we will construct a real number b < 1 which does not appear in this table, according to the
following process (the process is referred to as diagonalization).

If the first decimal place of f(1) is 1, then the first decimal place of b will be 2. Otherwise, the first
decimal place of b will be 1.

If the ith decimal place of f(i) is 1, then the ith decimal place of b will be 2, otherwise it will be 1.

Given the above example function, b = 0.2211...

N e 2
e Does any input produce b as output? Mo ( ARG mpeT ﬁ?ﬁ R ?R)
e What does this have to do with Computer Science?
e Are the set of computer programs countable or not? Yes

wwmpvrer prgrommi 2 sting = Bese 3o mteaers 9 couaable
e Are the set of problems countable or not? Mo

To answer the last question, lets make some simplifying assumptions. All problems require as
Def - input a single natural number (clearly there are other problems which don’t meet this criteria). In
( addition, all problems will return a boolean value (true or false).

Restioted De,f )Qr Fw‘a)e:w( (3%?{’%%3)
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Since the set of computer programs is countable, there is a bijective function from the natural
numbers to the set of computer programs. We’ll refer to the computer program which is output
from f(i) as M;.

Now list out the computer programs in order along the = axis. At entry (i, ), we write what M;
outputs when it is run on the input .

Can you identify a program which does not exist on this table?

Undecidable Problems

We will assume that the Halting Problem can be solved by program H(M,w). It takes as input
computer code M, and input to that computer code w and returns True, meaning that M halts on(M(w =tme)
input w, or False, meaning that it doesn’t halt. H always halts (otherwise it doesn’t really solve

the problem).

Using our solution to the Halting Problem, we can write a different program B(M, w). It works as
follows:

B(computer code M, input w)
)% If (H(M,w)==False) Then Return True
wnTpdictivn Else loop forever

What happens when I run B on input M = B?

e If B(B,w) halts, then H(B,w) returns True, which means B(B,w) loops forever. Contradiction.

e If B(B,w) doesn’t halt, then H(B,w) returns False, when means B(B,w) returns True. Con-
tradiction.
Holtmp prblem - 3508 3RD |
B is the barber from the barber paradox. If you assume B exists, you get a paradox. The only
possible conclusion is that B does not exist. We also showed B < H, so H doesn’t exist either!

XKCD:



