

Figure 1：SMBC Comics by Zach Weinersmith
Definition：Person p is famous iff（if and only if）everyone in this classroom knows p ，but p does not know anyone else in this classroom．

Definition：A single query consists of taking a pair of people (p, q) in the classroom，asking if p knows q ，and receiving a response．

Problem Formulation：Determine all the famous people in a classroom with n people，using the minimum possible number of queries．

1．Who in this classroom do you suppose is famous？
2．How would we test our hypothesis to the previous question？
3．If our hypothesis is wrong，does that mean nobody is famous？
4．How can we generalize our test to determine all famous people in the classroom？

A First Attempt：

1：For all people in the class p ：
2：For all people in the class q ，where $p \neq q$ ：
3：Check if p knows q ．If so，p is not famous．\}问了每人两以
4：\quad Check if q knows p ．If not，p is not famous．
5：If p is famous，add p to the list of famous people．
6：Return our list of famous people．
Follow－up Questions：

1．Is this a good algorithm？not
2．What does it mean for an algorithm to be＂good？＂efficient
3．How many queries does our algorithm use（exactly）？ $2 n(n-1) \rightarrow$ 只问每人一以 $\rightarrow n(n-1)$
4．How can we improve our algorithm？
5．How many famous people can there be，maximum？I
6．If p does not know q on line 3 ，is there any information we can deduce？p is not fanous

A Better Attempt：

1：Maintain a list of famous candidates，intialized to everyone in the classroom．
2：Take any pair (p, q) from the list（if not possible，go to step $\mathbf{5}$ ）．
3：Check if p knows q ．If so，p is not famous．If not，q is not famous．
4：Remove the non－famous person from the list，and return to step 2.

```
{ repeat until
```

5：There is now one famous candidate c ．
6：For all people in the class q where $c \neq q$ ：
7：Check if c knows q ．If so，nobody is famous．Return null．
8：Check if q knows c ．If not，nobody is famous．Return null．
9：c is famous．Return c ．

Followup Questions：

1．How many queries does this algorithm use in the worst case？$(n-1)+2(n-1)=3(n-1)$
2．Is this better than our old algorithm？yes
3．Is this always better than our old algorithm？he
当 $n \leq 3$ 时，not better
Important Points
1．When writing algorithms，pseudocode is acceptable（in fact，it is recommended）．You can also write in code，or in English，as long as you provide enough detail．（包括 edge case 等）
2．If a reasonably competent programmer could take your answer and code it up in a language of their choice，then your answer is acceptable．

3．Algorithms is learned with practice．If you think that you must have a＂Eureka＂moment to answer an Algorithms problem on a test，that is merely a sign that you need to practice more problems．

Core Course Questions

1．Given a problem，how do we produce an algorithm to solve it？
2．Given a problem and an algorithm，can we prove that the algorithm correctly solves the problem？
3．Given an algorithm，will it terminate in a reasonable amount of time？polynomial \rightarrow reasonable
4．What is a reasonable amount of time anyway？
5．Are there problems which cannot be solved in a reasonable amount of time？
6．How would we identify such problems？
7．Are there problems that no algoritum can solve？

Extra Problems

1．Improve the algorithm for the Famous Person Problem to require only $3(n-1)-\log n$ queries．
2．Informally argue why the Famous Person Problem cannot be solved in less than $\theta(n)$ queries．

Proofs and Recurrence Relations

Definition: Given two sets A and B, the Cartesian Product $A \times B=\{(x, y) \mid x \in A, y \in B\}$

Proof Types

1. Proof by Contradiction: if n^{2} is odd, then n is odd.

$$
\text { Assume } n \text { is even and } n^{2} \text { is odd }
$$

2. Proof by Contradiction: There are an infinite number of primes.

```
Assume finite of primes }=>\mathrm{ there is a largest pome p
fundamental theorem of arithmetic: p! dinsitle by all the primes
    =>p!+1 is not dinsit) by any number between 1 and p
    so its pome fantorization contains promes }s
```

3. Prove or disprove: for any sets A, B, C, if $A \times C=B \times C$, then $A=B$.

Proof Attempt for 3:
1: Assume the opposite: $A \times C=B \times C$ but $A \neq B$.
2: Since $A \neq B$, there must be some element in one set which is not in the other set.
3: wlog, assume a unt one A and $a \notin B$.
4: Take an arbitrary element $c \in C$. we assume $\exists c$ in C
5: By definition of cartesian product, $(\phi, c) \in A \times C$, and $(a, c) \notin B \times C$. Contradiction with 1.
6: If $A \times C=B \times C$ then $A=B$. case $Z: C=\phi \quad A \times \phi=\phi$
Are there any holes in this proof?

Proof Tips

- Run through some examples. This will help convince yourself the claim is true, as well as give you an intuitive understanding for why its true.
- Use the definition to translate a statement into mathematical form when possible. This makes the proof easier.
- When doing a proof by contradiction, make sure you are assuming the logical opposite. Make a truth table if you have to.
- Finding a proof is not a straight line from A to B. Even the most experienced research scientists go off on incorrect tangents when looking for a proof of a fact. Just keep deriving stuff until you get what you need.
- If you don't know whether you need to prove or disprove a statement, follow your intuition. If you fail to reach the required conclusion, you probably learned something about the problem. Use this new information and try the other path!

Inductive Proofs

- Prove: Any $2^{n} \times 2^{n}$ chessboard with one square removed can be tiled using 3 -square L-shaped pieces.

I.H. Asume claim is tme $\forall n \leqslant k$
I. S. $n=k+1$

- Find the flaw in the proof that $a^{n}=1$ for all non-negative integers n and all non-zero reals a.
Base Case: $a^{0}=1$.
Inductive Assumption: $a^{n}=1$, for all $n \leq X$.

Figure 1: Abstruse Goose \# 230: After working on this proof for years, I have finally decided that it IS, in fact, obvious.

Figure 2: Abstruse Goose \# 353

```
Mergesort(Array A[1:n])
    If n==1 Then return A 0(1) f(n)=2f(\frac{n}{2})+0(n)
    B = Mergesort(A[1:n/2]) f(\frac{n}{2})
    C = Mergesort(A[n/2+1:n]) f(\frac{n}{2})
    return Merge(B,C) 0(n)
```


Questions:

- What is the running time of MergeSort? $\quad f(n)=$ runtime of Merge Sort in thingss $\theta(n \log n)$
- How do you know what the running time is?

A recurrence relation is a recursive definition for a sequence of numbers. They can be used to model the running time of a recursive algorithm.

Recurrence Relation for MergeSort: $g(n)=2 g\left(\frac{n}{2}\right)+d n . g(2)=e$.
Inductive Proof that MergeSort $=O(n \log n)$
1: Hypothesize that $g(n) \leq c n \log n$, for all $n \geq 2$. Note that we get to choose what c is.
2: Base Case: We need $g(2)=e \leq 2 c \log 2=2 c$. Choose c large enough so that $e \leq 2 c$.
3: I.H.: Assume that $g(n) \leq c n \log n$, for all $n: 2 \leq n \leq k$.
4: Consider $g(k+1)$. By the definition, $g(k+1)=2 g\left(\frac{k+1}{2}\right)+d(k+1)$.
5: By the inductive hypothesis, $g\left(\frac{k+1}{2}\right) \leq c \frac{k+1}{2} \log \left(\frac{k+1}{2}\right)$.
6: $g(k+1) \leq c(k+1) \log \left(\frac{k+1}{2}\right)+d(k+1)=c(k+1)([\log (k+1)]-1)+d(k+1)=$ $c(k+1) \log (k+1)+(d-c)(k+1)$.
7: We need $c(k+1) \log (k+1)+(d-c)(k+1) \leq c(k+1) \log (k+1)$. Choose c large enough so that $d \leq c$.
\exists such $c \Rightarrow$ proved

Followup Questions:

- Does this prove Mergesort $=\theta(n \log n)$?
- Is it valid to use $n=2$ as the base case?
- What would have happened if we tried $n=1$ as our base case?
- What are the disadvantages to solving recurrence relations with Induction?

Figure 3: A Recursion Tree argument that MergeSort $=\theta(n \log n)$
Master Theorem

- Can solve (almost) any recurrence relation of the form $f(n)=a f\left(\frac{n}{b}\right)+g(n)$, with constants $a \geq 1, b>1$.
- Compare $g(n)$ with $n^{\frac{\log a}{\log b}}$.
- Case 1: If $g(n)=\theta\left(n^{\frac{\log a}{\log b}}\right)$, then $f(n)=\theta(g(n) \log n)$. runtime
- Case 2: If $g(n)=\Omega\left(n^{\frac{\log a}{\log b}+\epsilon}\right)$, for some $\epsilon>0$, then $f(n)=\theta(g(n))$.
$\left.\begin{array}{l}\text { - What should Case } 3 \text { be? } \\ \text { case } 3 \text { : if } g(n)=O\left(n^{\log a} b-\epsilon\right.\end{array}\right)$ for some $\varepsilon>0$, then $f(n)=\theta\left(n^{\left.\frac{\log a}{\log b}\right)}\right.$
Extra Problems

1. Prove for any integer n : n is odd if and only if $3 n+1$ is even.
2. Use Induction to prove that $\sum_{i=0}^{n} \frac{1}{2^{i}}<2$.
3. Chapter 2, exercises $3,4,5,6$.
4. Challenge problems: Chapter 2, exercise 8

Advanced Runtime Analysis

Master Theorem

- Can solve (almost) any recurrence relation of the form $f(n)=a f\left(\frac{n}{b}\right)+g(n)$, with constants $a \geq 1, b>1$.
- Compare $g(n)$ with $n^{\frac{\log a}{\log b}}$.
- Case 1: If $g(n)=\theta\left(n^{\frac{\log a}{\log b}}\right)$, then $f(n)=\theta(g(n) \log n)$. runtime
- Case 2: If $g\left(n_{\text {bigger at least some biq, not pust lower bound }}^{)}=\Omega\left(n^{\frac{\log a}{\log b}+\epsilon}\right)\right.$, for some $\epsilon>0$, then $f(n)=\theta(g(n))$.
$\left.\begin{array}{l}\text { - What should Case } 3 \mathrm{be} \text { ? } \\ \text { case } 3 \text { : if } g(n)=O\left(n^{\log a} \log -\epsilon\right.\end{array}\right)$ for some $\varepsilon>0$, then $f(n)=\theta\left(n^{\frac{\log a}{\log b}}\right)$
Master Theorem Questions
- How much work is done at the top level?
- How many children does the root node have?
- How much work is required at a child node?
- How many grandchildren are there?
- How much work at a grandchild node?
- What is the depth of the tree?
- How many leaf nodes are there?
- How much work at a leaf node?
- How much work is done at the bottom level?
- Solve: $f(n)=2 f\left(\frac{n}{2}\right)+c n$
- Solve: $f(n)=f\left(\frac{n}{2}\right)+1$
- Solve: $f(n)=8 f\left(\frac{n}{2}\right)+1000 n^{2}$

推导by tree：

master theorem：compare top level with bottom level

$$
\text { 如果 } g(n) \text { 大, 文看 } g(n)
$$

如果 $n^{\frac{\log a}{\log b}}$ 大，贝眚 $n^{\frac{\log a}{\log b}}$
如果一样大，那 level $g(n)=\log _{b} n \cdot g(n)$

$$
=g(n) \log n
$$

use master theorem for mergesort，

$$
\begin{aligned}
& f(n)=2 f\left(\frac{n}{2}\right)+\theta(n) \\
& a=2, b=2, g(n)=\theta(n) \\
& n^{\frac{\log n}{\log 6}}=n=\theta(n) \quad \Rightarrow \text { case } 1 \\
& \therefore f(n)=\theta(n \log n)
\end{aligned}
$$

use master theorem for binary search：

$$
\begin{aligned}
& f(n)=f\left(\frac{n}{2}\right)+\theta(1) \\
& a=1 \quad b=2 \quad g(n)=\theta(1) \\
& n^{\frac{\log a}{\log }}=1=\theta(1) \\
& \therefore f(n)=\theta(\log n)
\end{aligned}
$$

$$
\begin{aligned}
& f(n)=8\left(\frac{n}{2}\right)+1000 n^{2} \\
& a=8 \quad b=2 \quad g(n)=1000 n^{2} \\
& n^{\frac{\log a}{\log b}}=n^{3}>1000 n^{2} \\
& \therefore f(n)=\theta\left(n^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \log _{\log n} \quad 1 \quad 1 \quad 1 \quad \frac{n}{\log _{2} n-\left(\log _{2} n-1\right)}=\frac{n}{1} \\
& \sum_{i=1}^{\log n} \frac{n}{i}=n \sum_{i=1}^{\log n} \frac{1}{i}=\theta(n \log (\log n)) \quad \sum_{i=1}^{\log n} \frac{n}{\log \cdot n}=\theta(
\end{aligned}
$$

－Solve：$f(n)=2 f\left(\frac{n}{2}\right)+n^{2} \quad \theta\left(n^{2}\right)$

$$
a=2 \quad b=2 \quad g(n)=n^{2}>n
$$

－Solve：$f(n)=2 f\left(\frac{n}{2}\right)+\frac{n}{\log n}$（This one is trickier than it looks！）

$$
\begin{array}{ll}
a=2 \quad b=2 & g(n)=\frac{n}{\log n} \\
n^{\frac{\log a}{\log b}=n} & \\
\text { test case 3: } & g(n)=O\left(n^{\frac{\log a}{\log b}-\epsilon}\right. \\
& \text { 制断是砬为true } \\
& \frac{n}{\log n}=O\left(n^{1-\epsilon}\right)=0 \\
& n^{\epsilon} \stackrel{?}{=} O(\log n) x
\end{array}
$$

Analyzing Master Theorem by Recursion Tree（credit：GeeksForGeeks）

Amortized Runtime

Recall the List ADT：implemented with an array） push－bark analysis
1．insert（int position， T value）best：$\theta(\cdots)$ wort：$\theta(n)$ average：$\theta(1)$
2．remove（int position） amortized worst case：θ い

3．set（int position，T value）
4．T get（int position）
2°
2^{\prime}
1
2^{2}

$$
\begin{aligned}
& \sum_{i=0}^{\log _{2} n} 2^{i}+\sum_{i=0}^{n-\log _{2} n} 1=n+n-\log _{2} n=\theta(n) \\
& \Rightarrow \text { amortized: } \frac{\theta(n)}{n}=\theta(1)
\end{aligned}
$$

$$
(+\cdots+\infty=\theta()
$$

Analyze the runtime analysis for each of these operations when implementing the List with an Array.

1. What would be the runtime of Get?
2. What would be the runtime of Remove?
3. What would be the runtime of Insert?

Amortized analysis takes the big picture and says: the first x operations will take no more than $\Theta(y)$ time, for an average of $\Theta\left(\frac{y}{x}\right)$ per operation. Amortized runtime is the worst-case average-case.

- What would be the amortized runtime of Inserting at the end of an ArrayList?

Let's say we have a boolean array as a "counter". Each index starts at 0 (false), and then the counter starts counting up in binary.

Flipping an index from 0 to 1 , or from 1 to 0 , costs an operation. Counting from 0000 to 0001 only takes 1 operation, but counting from 0011 to 0100 takes 3 operations.

Our increment function should correctly increase the binary number by 1, flipping all necessary bits.

- What is the worst-case runtime of our increment function?
- What is the amortized runtime of our increment function?

Increment	Time	Total Time	Average Time
1	1	1	1
2	2	3	1.5
3	1	4	1.33
4	3	7	1.75
5	1	8	1.6
6	2	10	1.67
7	1	11	1.57
8	4	15	1.88
16	5	31	1.94
32	6	63	1.97
64	7	127	1.98

Extra Problems

1. Solve the recurrence relation: $f(n)=f\left(\frac{n}{4}\right)+\sqrt{n}$
2. Solve the recurrence relation: $f(n)=f\left(\frac{n}{4}\right)+1$
3. Solve the recurrence relation: $f(n)=f\left(\frac{n}{4}\right)+\log n$

Minimum Spanning Trees
Given a connected graph $G=(V, E)$ ，a Spanning Tree is a subset of the edges which form a tree on the original nodes．

Given a weighted connected graph，a Minimum Spanning Tree（or MST）is the spanning tree which minimizes the sum of the edge weights．

Kruskal＇s Algorithm：Add edges from smallest to largest，unless an edge creates a cycle．
Reverse－Delete：Remove edges in descending order，unless an edge disconnects the graph．
Prim＇s Algorithm：Start w／some root，greedily grow tree like dijkstra＇s by choosing the smallest edge with exactly one endpoint in the explored set．
？What is the runtime of Prim＇s algorithm？$\theta(m \log n)$
－What would be the first step in the implementation of Kruskal＇s Algorithm？sort the edges
－What would the runtime of this step be？$\theta(m \log m$ ）for（each edge $e)\{$
－What is the runtime of Kruskal＇s algorithm overall？$\theta \cdot m^{2}$ ］a cycle，add A \downarrow DFSOFS
New data structure：Union－Find．Maintain one set for each connected component，consisting
of all nodes in that component．

$$
\text { in. } \theta(m+n)
$$

Union（ x, y ）combines the sets x and y into a single set．

$$
=\theta\left(\mathrm{m}^{2}\right)
$$

Find (x) determines which set contains node x ．If $\operatorname{Find}(x)=\operatorname{Find}(y)$ ，you don＇t want to add the edge (x, y) ．

Kruskal（V，E）
1：Sort E in ascending order of weight．$\theta(m \log m)$
2：For each edge (x, y) in ascending order of weight $\{\quad$ every node 存自己是哪 quinn：
3：$\quad a=\operatorname{Find}(x)$ which component $3 x$ in
4：$\quad b=\operatorname{Find}(y)$
5：If $a \neq b$ Then \｛
6：$\quad \operatorname{Union}(a, b)$
Find：θ us

7：\quad Add edge (x, y)
Union：$\theta(n)$

8：\} \}
$2 m \cdot \theta(1)+(n-1) \cdot \theta(n)$
$=\theta\left(m+n^{2}\right)$
$=\theta\left(n^{2}\right)$

$$
\Rightarrow \text { 总: } \theta\left(m \log m+n^{2}\right)
$$

Attempt 1：Each node has a variable which stores the name of the set which it is in．
－How long would Find take？$\theta(1)$
－How long would Union take？$\theta(n)$
Attempt 2：Each set is identified by a specific node，whom we＇ll refer to as the＂captain＂of the set．Each node has a pointer to another node in the set．The captain＇s pointer will be null．captain determines the name of a set

\therefore（2）\rightarrow（4）

每个 components truk ins height

贿连 $2 y$ height 相等可 captain 时，height 增加 just wee points to another
－How long would Union take，assuming we pass in the captains of sets？θ（s）
－How long would Find take？worst：$\theta(n) \Rightarrow \theta(\log n)$
≤ 2－The worst－case analysis of Find requires a rather stupid decision．How could we in－
≤ 2 prove our Union－Find data structure？
≤ 3
－If we do a union between trees of depth x and y ，where $x<y$ ，what is the depth of
$\leq \psi$ the new tree？y
－When would a union produce a tree of greater depth？
－What is the depth of a 1,2 ，or 3 node tree？
－What is the greatest depth possible for a 4 node tree？
－How many nodes are required to produce a depth－3 tree？
－How many nodes are required to produce a depth－4 tree？
－What is the runtime of Find？$\theta(\log n)$
－What is the runtime of Union，assuming we pass in set captains？θ（mort
－Putting it all together：what is the runtime of Kruskal＇s Algorithm？$+2 m \cdot \theta(\log n)+(n-1) \theta(1)$
－Why does the book give a different runtime analysis for Kruskal＇s algorithm？

$$
\left.\begin{array}{ll}
\because<n^{2} & \theta(m \log n) \\
\theta(m \log m)<\theta\left(m \log n^{2}\right)=\theta(2 m \log n)=\theta(m \log n)
\end{array}\right)
$$

可在每一以 find 时缩减树的高度（找亮改成直接指向 captain）\Rightarrow 减少 naion－find 中 runtime

To get a better runtime for Kruskal＇s，we would need to find a better sorting algorithm． MergeSort obtains $\theta(n \log n)$ ：is it possible to beat this？

Claim：Comparison－based sorting takes $\Omega(n \log n)$ time．
A sorting algorithm is comparison－based if we make comparisons between elements in the array－to－be－sorted，and determine the sorted order based on those comparisons．

Comparison Based Sorting Lower Bound

Decision Tree of Program
－When we reach a leaf node in a decision tree，what do we know？

```
It is the final sorted order
```

－How many leaf nodes must there be when we wish to sort n numbers？ $\geqslant n$ ！（每个 leaf node 指向－种 permutation）
－How deep must the tree be to achieve this？

$$
\begin{array}{ll}
\geqslant \log n! & n!\neq \theta\left(n^{n}\right) \\
\text { 最底层是 } n! & n!=0\left(n^{n}\right) \\
& \log n!=\theta\left(\log n^{n}\right) \rightarrow \theta(n \log n)
\end{array}
$$

－Is there such a thing as a sorting algorithm which is not comparison－based？

－What is the runtime of Radix Sort？

$$
\theta\left(n \cdot \neq \#_{1}\right)
$$

phases / maximum digits in any one number
－Is this better than MergeSort？
Depends on digit of the number
－What is the best achieveable runtime to sort an array of size n ，which contains the numbers 1 through n randomly permuted？
h hear time（ \because 已知营案是 $1, \cdots, n$ ，只是要换个point out）

Graphs

assume no multi－edges，no self－loops
An unweighted graph G is defined by two sets，$G=(V, E) . V=$ vertices／nodes．$E=$ edges between pairs of nodes．$n=|V|, m=|E|$ ．

Some questions：
－What is a simple graph？no multi－edges，no self－loops
－What is a simple cycle？no repeat nodes
$=$ cycle \Leftrightarrow cirmit callow repeat nodes） $\quad\left\{\begin{array}{l}\text { walk：can repeat nudes } \\ \text { path can not repeat nodes }\end{array}\right.$
－When is an undirected graph a tree？
－What basic search algorithms can you use to determine if there is a path between two nodes s, t ？
$\left\{\begin{array}{l}\text { BFS } \rightarrow \text { find shortest path } \\ \text { DFS }\end{array}\right.$
－What are the running times of these search algorithms？$\theta(m+n)$
－Which of these algorithms work if you are specifically looking for the shortest path？BFS

A graph is bipartite if nodes can be colored red or blue such that all edges have one red end and one blue end．

偶可奇 X

Bipartite Graph Questions：

odd length cycle
－What was wrong with the second example？Why was it impossible to color correctly？ If a graph has an odd－length cycle，then is not bipartite $(v$
－Is the converse of that statement necessarily true？
converse：If a graph is not bipartite，then it has an odd length cycle
－How could one write an algorithm to test whether a graph is bipartite？This should be based on a basic search algorithm．
use BFS fart：find an edge between two nodes on the same layer of a BFS rue
A directed graph is strongly connected if every pair of nodes can reach each other．一定形成 $2 k+1$ length
A directed graph is connected if for every pair of nodes，one can reach the other．的 cycle
A directed graph is weakly connected if every pair of nodes can reach each other if you ignore edge directions．

discunnerted

Connectivity Questions:

True - Is the following statement true or false? Let s be an arbitrary node. G is strongly
connected iff every node is reachable from s and s is reachable from all nodes. connected iff every node is reachable from s and s
$\rightarrow \checkmark$

- How could one write an algorithm to test whether a graph is strongly connected?
- Can we improve the efficiency of our algorithm?

Extra Problems:

- Chapter 3, exercises 2, 4, 5, 7, 9, 10
- Challenge problems: Chapter 3, exercises 6, 12

```
Algorithm: improve:
    choose S
    For each node v}=5\mathrm{ :
        mun BFS(DFS) from }v\mathrm{ , cherk that }s\mathrm{ is reached
0(n(m+n))
0(\textrm{nm})}\longrightarrow\mathrm{ mark all wodes as unvisited
But if m<<n -> highly disconnected
\rightarrow \text { fours very soon}
\rightarrow \text { dart have to incluce } \theta ( n ) \text { ntomes}
    (\therefore +n可省)
```

A directed acyclic graph (or DAG) is a directed graph with no directed cycles.
A topological order of a directed graph is an ordering of its nodes v_{1}, \ldots, v_{n} such that for every edge $\left(v_{i}, v_{j}\right), i<j$.

Questions:

- How are these two concepts related? if a graph has a topological order, then it's a DAG.

- Design an algorithm to find a topological ordering, given the above idea. start with the node having no incoming edges node $1 \rightarrow \theta(m+n+1)$
remove
use induction remove update incoming edges, find next node $w /$ incoming edges nodes
- What is the runtime of the algorithm?

$$
\theta(n(m+n))
$$

- What would this algorithm look like if we calculated the topological order in reverse?

$$
\Rightarrow \theta(m+n) \text { in total }
$$

- What basic algorithm would aid in finding the topological order in reverse?
improve:
Set queue of nodes wo incoming edges

devement their \# of incoming edges
if the node has 0 incoming edges, add them to queue

$$
\begin{aligned}
& \text { in finding the topological order in reverse? } \\
& \text { walk through graph, calculate in-degree of all nodes } \\
& \text { keeping track of which nodes have no incoming edges } \\
& \text { add them to quine } \\
& \text { white i thing in queue): n times } \\
& \text { dequene } \\
& \text { decrement \# of incoming edges for nodes pointed by the prev node } \\
& \text { if then of incoming edges }=0 \quad d^{+}(\text {node next }) \\
& \text { add to queue. }
\end{aligned}
$$

In reverse

找 node with no outgoing edge（倒着找，从最后一个点开姑找）
找 dead－end，然后banktraung，如果上一个 rode 有其他路，就往下走，直到 dead－end use DFs
（可无视 visited过的点）

Dynamic Programming

Fibonacci（int n）
1：If $n \leq 2$ Then Return 1
2：Return Fibonacci（n－1）＋Fibonacci（n－2）
Calculating Fibonacci Numbers
－What is the recurrence relation for this algorithm？

$$
T(n)=T(n-1)+T(n-2)+\theta(1)
$$

－Can Master Theorem solve this recurrence？No

－What is my algorithm doing which is rather stupid？
重复计算
－How could I fix this problem？

$$
\downarrow \text { 利用 recursive } \Leftrightarrow \text { iterative }
$$

DynamicProgrammingFibonacci（int n）
1：$A[1]=1$
2：$A[2]=1$
3：For $i=3$ to $n \quad \theta(n)$
4：$\quad A[i]=A[i-1]+A[i-2]$
5：Return $A[n]$（其实只用存 2 int）
Memoization is the process of writing down intermediate results to refer to later．
Dynamic Programming is the process of transforming a recursive function which repli－ cates work into an iterative one which solves each subproblem once，writing down the answer for future reference．
＂Write Stuff Down＂
先写recursive再转动规

In the Weighted Interval Scheduling problem，we have n jobs．Job j has start time s_{j} ，finish time f_{j} and value v_{j} ．Two jobs are incompatible if their times overlap．Find the max－valued subset of mutually compatible jobs．

Byte－Size Decisim

What is the optimal solution for the above instance？ $2,7 / 3,6,8$
Finding the optimal solution in general is a daunting task．It is always a good idea to split
the problem up into smaller，bite－size pieces．

Question 1：Do I include interval 1 in my solution or not？No
Question 2：Do I include interval 2 in my solution or not？，etc．
$a=$（solve for $\left.Q_{\psi}\right)+v_{1}$
$b=$（solve for θ_{2} ）
return $\max (a, b)$

The top level of our recursion will tackle the first piece．Each successive function call will tackle a later piece．We do not yet know if we should include interval i ．Therefore，we will try including it，and try not including it，and determine which of the two produce a better solution overall．
－If I do not include interval 1 ，what is the next question which should be asked？
－If I do include interval 1 ，what is the next question which should be asked？
－If x is the best value that can be obtained on intervals 4 through 8 ，then what is the best value that can be obtained if I include interval 1？

We will define $S[z]$ to be the first interval i such that $s_{i} \geq f_{z}$ ．We are assuming that the intervals are sorted by s_{i} ，and that we fill this array out prior to running our recursive algorithm．We will define $S[z]=n+1$ when there are no intervals that satisfy this condition．
WIS（integer z ）
1：If $z>n$ Then Return 0
2：$x=\operatorname{WIS}(z+1)$
3：$y=v_{z}+\operatorname{WIS}(S[z])$
4：Return $\max (x, y) \leftrightarrows$ fins interval whose start $j \geqslant$ finish z

Use Memorization

先算后面的，后用于前面的计算

After this point we want to unroll this into a iterative solution which does not repeat work．
WIS（integer $z)$
1：$W[n+1]=0$ 用 l 圢存敏 Job起好后的最佳解

2：For $z=n$ to 1

4：Return $W[1]$
\Rightarrow Dynamit Programming Port：$\theta(n)$
1．This is our base case from the recursive function．$\omega[n+1]=0$
2．Here we are identifying the order in which we fill the array．We need to identify the order such that we have the information we need when we need it．If we tried to fill this array in from 1 to n ，we would have failed．

3．We＇re calculating $W[z]$ in the exact same way we calculated $\operatorname{WIS}(z)$ ，except we have the values $W[z+1]$ and $W[S[z]]$ written down（memoized）for future use，instead of recursively calculating them on the spot．

4．After we have found our array，we need to identify where the answer is stored in the array，and return that value．

7	7	7	4	4	4	3	1	0

You can write your solutions in the above manner if you wish．I＇ll go through the exact same process，but in a less formal，more＂pseudo－code＂type description，which you are encouraged to use．This is generally easier to read and grade．You must identify 5 things in such a description：

1．State what parameters your function accepts，and what value it returns．We are not mind－readers，so please explain what you are doing． define inputs ontput parameters
2．Give the recursive function to calculate your intended function output．This is usually the hardest step．

3．Give the base case（s）for your recursive function．
4．State what order you will fill the array in for your iterative procedure．
5．State where the answer is stored in your final array．

＊6．Runtime

1: Let WIS $[z]$ contain the best value which is attainable on intervals z through n.
2: $\operatorname{WIS}[z]=\max \left(\mathrm{WIS}[z+1], v_{z}+\mathrm{WIS}[S[z]]\right)$
3: $\operatorname{WIS}[n+1]=0$
4: Fill the array in reverse order from WIS[$n+1$] to WIS[1]
5: The answer is stored at WIS[1].

Dynamic Programming Design Process

1. Reduce the problem to a series of ordered decisions (What is the nth, (n-1)st, (n-2)nd, etc, fibonacci number? Do we include interval $1,2,3$, etc?). The simpler the decisions are, the better.
2. Make sure your subproblems can be described concisely: this description is what we pass down to the next level of recursion (We only need to remember which fibonacci number we're currently calculating. We only need to remember which interval we're currently considering).
3. Design a recursive procedure to make these decisions in an ordered way.
4. Instead of using recursion, show how to solve this problem by iteratively filling out a table.

Why do you suppose this programming technique is called Dynamic Programming?
Extra Problems:

- Chapter 6: exercises $1,4,6,19,20,26,27$
- Challenge problems: Chapter 6: exercise 24

Lecture 8: Dynamic Programming

You can write your solutions as code if you wish. I'll go through the exact same process, but in a less formal, more "pseudo-code" type description, which you are encouraged to use. This is generally easier to read and grade. You must identify 5 things in such a description:

1. State what parameters your function accepts, and what value it returns. We are not mind-readers, so please explain what you are doing.
define inputs ontput parameters
2. Give the recursive function to calculate your intended function output. This is usually the hardest step.
3. Give the base case(s) for your recursive function.
4. State what order you will fill the array in for your iterative procedure.
5. State where the answer is stored in your final array.

* 6. Runtime

1: Let WIS $[z]$ contain the best value which is attainable on intervals z through n.
2: $\mathrm{WIS}[z]=\max \left(\mathrm{WIS}[z+1], v_{z}+\mathrm{WIS}[S[z]]\right)$
3: $\operatorname{WIS}[n+1]=0$
4: Fill the array in reverse order from WIS[$n+1$] to WIS[1]
5: The answer is stored at WIS[1].
Dynamic Programming Design Process

1. Reduce the problem to a series of ordered decisions (What is the nth, (n-1)st, (n-2)nd, etc, fibonacci number? Do we include interval 1, 2, 3, etc?). The simpler the decisions are, the better.
Reduce the problem to byte-size decisions
2. Make sure your subproblems can be described concisely: this description is what we pass down to the next level of recursion (We only need to remember which fibonacci number we're currently calculating. We only need to remember which interval we're currently considering).
3. Design a recursive procedure to make these decisions in an ordered way.
4. Instead of using recursion, show how to solve this problem by iteratively filling out a table.

Longest Increasing Subsequence

Given a sequence of numbers $s_{1}, s_{2}, \ldots, s_{n}$ ，delete the fewest numbers possible so that what is left is in increasing order．

Example input：3，4，1，2，8，6，7，5， 9
We＇ll try the same bite－size questions we have in the previous problems． Q1：Do we keep s_{1} or not？can do LIS Leos，lower limits \checkmark would work
s not good runtime
－If I do not keep s_{1} ，which number should I try next？ \boldsymbol{S}_{2}
－If I do keep s_{1} ，which number should I try next？next $\left[S_{1}\right]=S_{2}$
－What information must be passed down to the next level of recursion？
－Is this information concise？LIS $[x]=\max$（LIS $[x+1], 1+$ LIS $[$ first thing bigger than $x]$可能会break increasing x
We lost some critical information：the largest number we＇ve included so far．This information needs to appear in the parameters，or else we will have to pass a ton of information down the recursion chain．

Attempt 2 bite－size questions：จ
Qi：If I include s_{i} ，what number should I include next？

> 几把枚举变为DP的关铤

$$
k>i, S_{k}>S_{i}
$$

*找约束条件!
$\operatorname{LIS}[z]$ will store the length of the longest increasing subsequence which starts with s_{z} ．

－I don＇t know which number to include after s_{z} ，so I try all of them．Well，not really all of them，there are some constraints．What constraints do I place on which number I can include next？
－What does the recursive formula look like for $\operatorname{LIS}[z]$ ？LIS $\tau z]=\max _{k: k>z, S_{k>S_{z}}}([1+$ LIS $I k])$
－What order do I fill in the array？逆序
－Where is the answer stored in the completed array？
Find the max of the Lis array
－How do I reconstruct the actual sequence？
－What is the runtime of the algorithm？

```
LTS [n+1]=0
        3,4,1,2,8,6,7,5,9
for(z=n to 1):
    lis[z])=}\mp@subsup{\operatorname{max}}{k:k>z,Sk>Sz}{}(1+l{[k]
        can save pointers to get the values.
return max of [IS[]
```

$\theta\left(n^{2}\right)$

Primality（int $\underline{\mathrm{X}})$
1：For $i=2$ to $X-1$
2：If $X \% i=0$ Then Return False
3：Return True
－What is the runtime of the above algorithm？
polynomial to value
$\theta(x) \quad x=2^{\log _{2} x} \Rightarrow$ runtime is exponential／psendo－polynomial f
－Is this a polynomial－running time algorithm？这里是关于 value，不是井 of input \Rightarrow no No．$\quad \rightarrow$ has to be linear in relation to the input
－When I ask if an algorithm is polynomial，it must be in relation to something．In relation to what，specifically？
\＃of input

Coin－Changing：

There are n denominations of coins $1=d_{1}<d_{2}<\ldots<d_{n}$（you have an unlimited amount of each coin）．You have a target sum T ．Determine the fewest number of coins needed to make change．
－Suppose I＇m using American currency $\left(d_{1}=1, d_{2}=5, d_{3}=10, d_{4}=25\right)$ ．What would be an optimal algorithm？先尽量找最大的能够给几个，其次以大的…
－Suppose my currency is $d_{1}=1, d_{2}=10, d_{3}=15$ ．Does the above algorithm still work？ No Eg：$T=20$
－I need to break this up into bite－size decisions．What should my first decision be？ Whether you take this win
－What information do I need to pass down to the next level of recursion？
$C C[x]$ will be the fewest number of coins needed to make change for x cents．
－If I select denomination d_{i} next，what recursive call should I make？

$$
C C[x]=\min _{i:(c c[t-d i])+1}(c c[0]=0
$$

－If I select denomination d_{i} next，how does this change the number of coins I＇ve used？

- At what point should I stop recursing?
went to 0

$$
\begin{array}{ll}
C C[x]=1+\min _{i}\left(C C\left[x-d_{i}\right]\right) & C C[0] \\
C C[0]=0 & \text { from }(0 \text { to } T) \\
C C[x]=\infty, \text { for all } x<0 . & C C[t]=1+\min \left[C\left[t-d_{i}\right]\right. \\
i: d_{i} \leq t
\end{array}
$$

- What order should I fill the array? return cc $[T]$ from 0 to x
- Where is the answer stored?
$c c[x]$
- What is the runtime of the algorithm?
$\theta\left(n 2^{\log 2 T}\right) \quad(=\theta(n T))$
- Is this a polynomial-running time algorithm?

No.

Lecture 9：2－D Dynamic Programming

Assembly－Line Scheduling

There are 2 assembly lines，each with n stations．The i th station on each line is denoted $S_{1, i}$ and $S_{2, i}$ ．An automobile starts at your choice of $S_{1,1}$ or $S_{2,1}$ ．Station $S_{i, j}$ has a processing time $a_{i, j}$ ．After station $S_{i, j}$ ，the automobile can stay on the same line and go to $S_{i, j+1}$ at no cost，or switch lines at cost $t_{i, j}$ ．

$S[i] j j=\min \left(S[\right.$ the other hne $][j+1]+t\left[i j[j], S_{[i]}[j+\lambda)+G_{i, j}\right.$
－If we want to find the shortest path across the assembly lines，what basic algorithm could we use to solve this？Dijkstra $\theta(n \log n)$
－We need to break this up into a series of ordered decisions．What should our first decision be？Our second decision？
smith or stay as current line
－At each level of the recursion，we will be answered a single decision．What information changes at each level of the recursion，and thus must be passed down as parameters？ ALS（ i, j ）：i is the line number，j is the station
－If I am at $S_{i, j}$ ，what cost will I incur regardless of my choice？
－If I am at $S_{i, j}$ ，and I decide to stay on the same line，what station will I go to next？
－If I am at $S_{i, j}$ ，what cost will I incur if I decide to switch lines？
Define：ALS $[i, j]$ will store the length of the shortest path from $S_{i, j}$ to the exit．
$\operatorname{ALS}[1, j]=a_{i, j}+\min \left(\operatorname{ALS}[1, j+1], t_{1, j}+\operatorname{ALS}[2, j+1]\right)$
$\operatorname{ALS}[2, j]=a_{i, j}+\min \left(\operatorname{ALS}[2, j+1], t_{2, j}+\operatorname{ALS}[1, j+1]\right)$
ALSLi，j］＝$=a_{i j}+\min ($ ALS $\left.i, j+1], \operatorname{ti}, j+\operatorname{ALS}[3-i, j+1]\right)$
－What is the base case？
Alsii，n）$=$ ain

$$
\begin{aligned}
& \text { for } j=n+\infty 1 \\
& \text { for } i=1,2
\end{aligned}
$$

－What order do I fill in the array？
backward
－Where is the answer stored in the completed array？
Abs（1）$j j$ or Als［2］［j］
－What is the runtime of this algorithm？
$\theta(2 i j)$
－How do I determine the actual path through the assembly lines？
存 choice of each step

Sequence Alignment

We are given two strings $X=x_{1} x_{2} \ldots x_{n}$ and $Y=y_{1} y_{2} \ldots y_{m}$, and we want to determine how similar these strings are.

X=ocurrance
$\mathrm{Y}=$ occurrence

- If we simply check how many positions i satisfy $x_{i}=y_{i}$, what will we determine is the difference between these two strings?
- The above metric isn't very intelligent. What number should we really return?

$$
\text { - min } \# 1 \text { of edit to transform } x \text { to } y \text { after insert space / remove char }
$$

Thin fl of edit to transform x to y after insert spar / remove char
The distance between two strings is the minimal distance possible between two strings
after inserting your choice of spaces. Our goal is to efficiently calculate the edit distance
bet X and Y.
The edit distance between two strings is the minimal distance possible between two strings
after inserting your choice of spaces. Our goal is to efficiently calculate the edit distance
and between X and Y.
$\mathrm{X}=$ oc-urrance
$\mathrm{Y}=$ occurrence $\min ($ insert, remove)
Edit distance $=2$
可insert/remove

$$
S A[0][i] \text { - edit distance after insert spore after } i
$$

$$
S A[i][i] \text { - edit distance after remove ith char }
$$

- We need to break the problem into bite-size decisions. What should be our first question?

```
insert/remove/replace/match
```

- The top level of recursion will handle the first decision only. What information do we need to pass down to the next level of recursion?
pos for x and pos for y

Define: $S A[i, j]$ is the min cost of aligning strings $x_{i} x_{i+1} \ldots x_{n}$ and $y_{j} y_{j+1} y_{m}$.

- If $x_{i}=y_{j}$, what recursive call should I make?

SA [i+1, j+1]

- What cost is incurred if $x_{i} \neq y_{j}$?

I

- If I accept the mismatch between x_{i} and y_{j}, what recursive call should I make?
- If I insert a gap in the X string, what recursive call should I make?
- Under what conditions should I stop recursing?
if $x_{i} \neq y_{j}, S A[i, j]=1+\min \begin{cases}S A[i+1, j+1] & \text { (replaces } \\ S A[i+1, j] & \text { (remove) } \\ S A[i, j+1] & \left.\text { (add } y_{j}+0 x\right)\end{cases}$
$S A[i, j]=S A[i+1, j+1]$, if $x_{i}=y_{j}$
$S A[i, j]=1+\min (S A[i+1, j], S A[i, j+1], S A[i+1, j+1])$, if $x_{i} \neq y_{j}$.
$S A[i, m+1]=n-i+1>$ inchusive \therefore 要 +1
$S A[n+1, j]=m-j+1$
- What order do I fill the array in?
for $j=m$ to 1
for $i=n$ to
- Where is the answer stored?

SA[0[1]

- What is the runtime?

$\theta(m n)$

- What are the space requirements?

This algorithm is used in computational genetics, which has absolutely huge strings.

- How could one reduce the space requirements?
- Are there any drawbacks to this solution?

RNA Secondary Structure

RNA is a string $B=b_{1} b_{2} \ldots b_{n}$ over the alphabet $\{A, C, G, U\}$. RNA is single-stranded (as opposed to DNA which is double-stranded), and loops back and forms pairs with itself. The "secondary structure" is determined by figuring out what the pairings are.

$$
\text { link } b_{1} \text { - bi will break } 17 \text { into } b_{2}-b_{i-1} \text {, biti-bn }
$$

In reality, how RNA bonds with itself is very complicated. We will simplify it a bit in order to get an approximation of how the structure will look. We will assume the following 3 rules are always followed:

- Each pairing is AU or CG.
- The ends of each pair are separated by at least 4 bases: if $\left(b_{i}, b_{j}\right) \in S$, then $i<j-4$.
- No pairs cross each other: if $\left(b_{i}, b_{j}\right),\left(b_{k}, b_{l}\right) \in S$, it is not the case that $i<k<j<l$

We will assume that the RNA strand forms the maximum possible number of pairs according to the above rules.

- What should our first decision be?

Bite size deusion \#1: What (if anything) does b1 pair with?

- What information do we need to pass down to the next level of recursion?
$R N A[i, j]=$ max number of pairings for string $b_{i} b_{i+1} \ldots b_{j}$ ．区间 DP
－If we do not pair b_{i} with anything，what recursive call should I make？

RnA（itu，j）
－If we pair b_{i} with something，how does the number of pairs found change？
$\operatorname{RNA}(i, j)=1+\underset{k=i+4<k \leq 1}{\operatorname{Max}}(\operatorname{RNA}(i+1, k-1)+\operatorname{RNA}(k+1, j))$
－What subproblem（plyjral！）do we need to consider if we pair b_{i} with b_{j} ？
separated by at least 4 bases
An／CG
－Under what conditions should we stop recursing？

$$
\begin{aligned}
& \qquad R N A[i, j]=\max \left(R N A[i+1, j], 1+\max _{t}(R N A[i+1, t-1]+R N A[t+1, j])\right) \\
& \text { Base case: } R N A[i, j]=0, \text { if } i \geq j-4 \therefore \text { larger } i \text { to smaller } i \\
& \text { - What choices of } t \text { are valid? } \Rightarrow \text { for } i=n \text { to } 1
\end{aligned}
$$

$$
i+4<t \leq j,(b i, b t)=A u \text { or } C G
$$

－What order do I fill the array in？

$$
\begin{aligned}
& \text { for } i=n \text { to } 1 \\
& \text { for } j=i \text { to } n
\end{aligned}
$$

－Where is the answer stored？

$$
R N A[1, n]
$$

－What is the runtime？

$$
\begin{aligned}
& \theta\left(n^{3}\right) \\
& \hookrightarrow \text { 双层品 }(\text { 每一个i, 丁遍历全部的 } t>i) \\
& =\theta\left(n^{2} \cdot n\right) \\
& =\theta\left(n^{3}\right)
\end{aligned}
$$

CSCI 270 Lecture 11

Subset Sum

Given positive integers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W, is there a subset of the integers which add up exactly to W ?

Sample instance: integers $=\{2,5,7,13,16,17,23,39\}, W=50$

- Is there a subset for the above instance?

- I need to break this up into bite-size decisions. What should my first decision be?
take/ not take
- What information do I need to pass down to the next level of recursion?
target sum, pos
$S S[x, t]$ will store 1 if you can use a subset of the integers $w_{x}, w_{x+1}, \ldots, w_{n}$ to add up exactly to t. 0 if othermise
- If I do not include w_{x}, what recursive call should I make?

Ss $[x+1, t]$

- If I do include w_{x}, what recursive call should I make?
s) $\left[x+1, t-w_{x}\right]$
- If one answer returns 1 , and the other answer returns 0 , then what should my recursive function return?
- Under what base case conditions do I return 1 ?

有,

- Under what base case conditions do I return 0 ?

无
$S S[x, t]=\max \left(S S[x+1, t], S S\left[x+1, t-w_{i}\right]\right)$
Base $\{S S[x, 0]=1$
case $\quad S S[n+1, t]=0, \forall t \neq 0$
－What order should I fill the array？

$$
\text { for } x=n+1 \text { to } 1
$$

$$
\text { for } t=0 \text { to } w \text { calc } s s[x, t]
$$

－Where is the answer stored？

```
S\[!,w]
```


－What is the runtime of the algorithm？

$$
\theta(n w)
$$

－Is this a polynomial－running time algorithm？
No（ $\because w$ can be too large ）
Shortest Path（Again！）A Allow negative weight

－What is the length of the shortest path from A to $C ? \quad A \rightarrow D \rightarrow C$
－What will Dijkstra＇s Algorithm find？$A \rightarrow C$
－Why didn＇t Dijkstra＇s Algorithm work？\because 有negative edge

What is the length of the shortest path from A to C ？无解
infinite loop as negative cycle

We will assume there are no negative weight cycles，since this leads to nonsense answers and situations．

We want to find the length of the shortest path from s to t on a graph with no negative weight cycles．
－What should my first decision be？which node do I go to next？
－What information do I need to pass down to the next level of recursion？
weight

Attempt 1：$S P[x]$ will be the length of the shortest path from x to t ．
$S P[x]=\min _{(x, y) \in E}\left(C_{(x, y)}+S P[y]\right)$
$S P[t]=0$

$$
\text { When we have loops } \rightarrow \text { infinize recursious }
$$

What order should I fill the array？\rightarrow 解决方案：加 time linit
Attempt 2：$S P[i, x]$ will be the length of the shortest path from x to t using no more than i edges．
$S P[i, x]=\min _{(x, y) \in E}\left(c_{(x, y)}+S P[i-1, y]\right)$
$S P[i, t]=0$ 时间内 $t \rightarrow t$ ，weight $=0$
$S P[0, x]=\infty, \forall x \neq t$
$>$ 时间用尽仍未到 t for $i=0$ t $n-1<$ 上限是 $n-1$
－What order should I fill in my array？for $i=0$ for $x=s$ to t
－Where is the answer stored？$S P[n-1, S]$ calc $S P[i, x]$
－What is the runtime of this algorithm？

$$
\theta(m n)
$$

－Is this a polynomial runtime？

$$
\text { Yes } \because \text { input }=\theta(n+m)
$$

This is known as the Bellman－Ford algorithm．

$$
\begin{aligned}
& \theta(m n) \\
& \text { BFS: } \theta(m+n) \\
& \text { Dijakstra: } \theta(m \log n)
\end{aligned}
$$

CSCI 270 Lecture 12：Greedy Algorithms

All－Pairs Shortest Paths

We want to find the shortest path between all pairs of points（we＇ll return $n(n-1)$ different answers， one for each pair）．BF 其实 get all sp from all nodes to me destination（都存在 $5 P$ 里）
How could we do this，using existing algorithms？run n times BF，once per destination θ un 3
We＇ll instead calculate this more directly，using dynamic programming，in the hopes that we are able to improve the runtime in some way．

Let $A S P[i, x, z]=$ the length of shortest path from x to z using no more than i edges．
$A S P[i, x, z]=\min _{(x, y) \in E}\left(c_{(x, y)}+A S P[i-1, y, z]\right)$
－What should my base cases be？ $\begin{aligned} & \operatorname{ASP}[0, x, y]=\infty \quad(\text { if } x \neq y \text { ）} \\ & \operatorname{ASP}[i, x, x]=0\end{aligned}$
－What order should I fill in the array？
－Where are the answer（s）stored？ASP［n－1］\rightarrow 出来的－整 个2D－array
－What is the runtime of the algorithm？θ（mn ${ }^{3}$
－Did we net any improvement in the running time？No
Flond－Warshall Clmized Bouse Force Search，
Unweighted Interval Scheduling Brute Force Search \rightarrow DP Greedy
（ some criteria，Just follow）
We are given n tasks，each with a start time s_{i} ，and finish time f_{i} ．Find the largest subset of tasks such that none of them overlap．

－What is the size of the largest possible subset？ $3,6,8 / 1,4,8 / 1,6,8$
－Propose a greedy criteria．How should we decide which interval to include next？
shortest duration，earliest start time，fewest collisions，earliest finish time，latest start time
－Can you find counter－examples to any of these criteria？
－Once you＇ve narrowed down your list of candidate algorithms to one，what should you do？
Greedy algorithms are easy to design，easy to write，and very efficient．The tradeoff is that they also tend to be unclear．Why does the algorithm work？How can you convince someone that the algorithm is correct？

Greedy algorithms often require a proof of correctness．It is not clear at all that our proposed algorithm for Interval Scheduling is actually correct．

Proving the correctness of an entire algorithm is rather overwhelming，so it is useful to break it down．Just as Greedy Algorithms tackle each bite－size decision sequentially，we will prove the correctness of each of these decisions sequentially，via an inductive proof．

IH Inductive Hypothesis：There is an optimal solution which includes the first k intervals from our solution．
Our first k choices are＂right＂if there is an optomal solution connistent with those fint k solution
Bl The base case is almost always trivial．Specifically，our base case is $k=0$ ．
Now we need to show there is an optimal solution which includes the first $k+1$ intervals from our solution．

What we know：
－There is some interval i which is the $k+1$ st choice in our solution．
－There is at least one（possibly multiple）optimal solutions which include the first k choices we did．
－We need to show at least one of those optimal solutions also include i ．
T．S．Assume our $(k+1)^{\text {st }}$ choire is not in OPT（假没一个最优解，现阶段存在是抽象的）
Take an arbitrary optimal solution $O P T$ which includes the first k intervals from our solution． Presumably $O P T$ does not include interval i（otherwise we＇re done）．However，of all the intervals it does include（other than the first k ），there must be one with smallest finish time．We＇ll call this interval j ．

（2）证 optimal
－Who do f_{i} and f_{j} compare？ $f_{i} \leq f_{j}$
－How should I transform OPT？ $O P T-j+i=O P T^{\prime} \Rightarrow$ we have proved our L．H．
－What is the runtime of our algorithm？
Extra Problems：
*思想: Bite-size + induction
－Chapter 4：exercises $3,5,6,7,9,13,15,24$
－Prove the correctness of the algorithms you found，using exchange arguments．

Sequential \rightarrow Exchange Argument：常用模板
BC.
IT.
T.S. OPT -K+i
\rightarrow prove valid (not break mule)
\rightarrow prove optimal
OPT: what we have get so far, we haven't
screwed it up by far.
假设的是一个害整的 OPT, 只是在IS.中我们比的久是
今上部分的OPT

SCI 270 Lecture 13：Sequential Exchange Arguments

－There is an optimal solution which includes the first 0 intervals from our solution （trivial base case）．
－Assume there is an optimal solution which includes the first k intervals from our solu－ ton，and call it OPT．
＊exchange argument
－Exchange some element of OPT with your algorithm＇s $(k+1)$ st choice，to produce a new solution $O P T^{\prime}$ ．Figuring out which element to exchange is a large part of the challenge．
－Prove that $O P T^{\prime}$ is still valid；that is，our exchange did not somehow break the rules．
－Prove that $O P T^{\prime}$ is still optimal；that is，the value of its solution is just as good as OPT．
－You have found an optimal solution $O P T^{\prime}$ which includes the first $(k+1)$ intervals from our solution！
－Therefore there is an optimal solution identical to ours！Proved by Induction．

Minimum Spanning Trees（MST常见证法：另一种方法十这种方法的一边 \rightarrow create cycle） （undirected）

We want to prove that Kruskal＇s Algorithm is correct，which adds edges from smallest to largest unless adding an edge creates a cycle．We will call the solution produced by Kruskal＇s Algorithm＇$U S$＇．

Base Case：There is an optimal solution which uses the first 0 edges added by $U S$ ．
Inductive Hypothesis：There is an optimal solution $O P T$ which uses the first k edges added by $U S$ ．

り一个完整的MST，其中nS前k条边在其中
Z．S ．Suppose $U S$ adds edge e_{k+1} next，but $O P T$ does not include this edge．
－Suppose we add edge e_{k+1} to $O P T$ ．What happens？
create a cycle
－There is some edge e_{f} in the cycle C which is not in $U S$（otherwise we could not have added $\left.e_{k+1}\right) . \Rightarrow e_{f}$ must cost more than e_{k+1} ，otherwise we would have chosen e_{f}
－Exchange e_{f} with e_{k+1} in $O P T$ to create $O P T^{\prime}$ ．OPT $-e_{f}+e_{k+1} \rightarrow O P T^{\prime}$

－Prove that $O P T^{\prime}$ is optimal，that is $c\left(e_{f}\right) \geq c\left(e_{k+1}\right)$ ．
－Assume（by way of contradiction）that $c\left(e_{k+1}\right)>c\left(e_{f}\right)$ ．
－Consider the subgraph of $O P T$ consisting of all edges with cost $\leq c\left(e_{k+1}\right)$ ，called $O P T_{C}$
$-\left\{e_{1}, e_{2}, \ldots, e_{k}\right\} \cup e_{f} \subseteq O P T_{C}$.
－$\left\{e_{1}, e_{2}, \ldots, e_{k}\right\} \cup e_{f}$ does not contain any cycles，so $U S$ would have added e_{f} before e_{k+1} ．
－Contradiction：$c\left(e_{f}\right) \geq c\left(e_{k+1}\right)$ ．Therefore $O P T^{\prime}$ is optimal．
We want to prove that Prim＇s Algorithm is correct．We will call the solution produced by Prim＇s Algorithm＇$U S$＇．

Base Case：There is an optimal solution which uses the first 0 edges added by $U S$ ．
Inductive Hypothesis：There is an optimal solution $O P T$ which uses the first k edges added by $U S$ ．

7．S．Suppose $U S$ adds edge e_{k+1} next，but $O P T$ does not include this edge．
－Let S be the set of nodes $U S$ has connected with the first k edges．

－Add e_{k+1} to OPT to produce a cycle C ．
－Since e_{k+1} has one endpoint in S and the other endpoint in $V-S$ ，part of C is in S and the rest is in $V-S$ ．
－Therefore there is another edge in C, e_{f} ，with one endpoint in S and the other in $V-S$ ．
－$e_{f} \notin\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ ，otherwise S would be a different set of nodes．
－Exchange e_{f} with e_{k+1} in $O P T$ to create $O P T^{\prime}$ ．OPT $+e_{k+1}-e_{f} \rightarrow O P T^{\prime}$
－Prove that $O P T^{\prime}$ is valid．
了选2。

$$
\begin{aligned}
& n-1 \text { edges }(+1 \text { 边 }-1 \text { i边 } \\
& \text { no cycle } \\
& \text { connected (can use the rest part of the cycle) }
\end{aligned}
$$

－Prove that $O P T^{\prime}$ is optimal．

$$
\begin{aligned}
& e_{f} \geqslant e_{k+1} \\
& \text { otherwise, } \frac{\text { prim's algorithm would have chosen } e_{k+1}}{\rightarrow \text { choose the smallest edge to span the tree }}
\end{aligned}
$$

Proof Practice

There are n students and m CPs in CSCI 270. You are forming study groups of size 3 , where each group either has 2 students and 1 CP , or 2 CPs and 1 student. Find a greedy algorithm that forms the maximum possible number of study groups.

The Algorithm:

If there are more students remaining than CPs, the next group formed should be of 2 students and 1 CP . Otherwise, form a group of 2 CPs and 1 student.

The Rules:

- Form groups of 2-3 people.
- Prove the correctness of the above algorithm. Your group should write a single solution on a piece of paper. You do not need to write your names. Feel free to ask questions of the instructor.
- When time is up, you will pass your paper to the group specified by the instructor.
- The instructor will now go over a correct proof.
- Read the proof you have been given. Write any comments you like. Put a grade on the top of the paper between 0 and 10 (10 is a perfect proof). Try to consider beyond whether the proof matches the instructor's proof, and instead consider whether the given proof is a valid and rigorous proof.
- Continue to pass each paper you grade to the same group, and continue to grade each paper you receive, writing your grade and comments next to the ones already given by the previous groups.
- If you spend less than a couple minutes grading a paper, you're doing it wrong: take as much time as you need. If you are currently grading one paper, and have at least 2 papers waiting in your queue, dequeue the extra papers and pass them to the next group.
- If you receive your own paper, you can leave after grading any other papers you've already received.
- The purpose of this exercise is to read and grade proofs, and to gain a better appreciation of what constitutes an effective proof. The grades you receive on your paper are of little consequence (you may find that you completely disagree with some of the comments and grades you receive: this is to be expected).

B．C．The solution is same to OPT for O groups
（no group to mess up）
T．H．There is an optimal solution OPT which contains the first k groups of this algonthm

$$
A L G[k]=\text { opT [k] for all } 0 \text { to } k
$$

I．S．consider the $k+1$ th group
Assume ALG［k＋1］\neq OPT $[k+1]$

OPT： 1 stu +2 ip \rightarrow remaining at least 1 student
swap： OPT $=$ OPT $-1 O P+1 S T h$
validity：剩余人数不变
optimal：fewer students remaining
\rightarrow more optimal

CSCI 270 Lecture 15: Scheduling to Minimize Lateness

We have n tasks, task j has duration t_{j} and deadline d_{j}. We choose an order to execute tasks, and we cannot interrupt a process until it is finished. As soon as one task finishes, we start the next one. If a task finishes after its deadline, it is late. We are concerned about which task is the most late. We want to minimize how late this task is.

If we start task i at s_{i}, then task i will finish at $f_{i}=s_{i}+t_{i}$. The lateness is $L_{i}=\max \left(0, f_{i}-d_{i}\right)$. $\max _{i} L_{i}$ indicates how tardy the most late task is, which we want to minimize.

- What greedy criteria might work for this problem? earliest deadline, shortest duraticus smallest-slack first (di-ti)
- Can you find any counter-examples to these algorithms?

For a given schedule S, an inversion is a pair of jobs i and j where $d_{i}<d_{j}$, but $f_{j}<f_{i}$.
That is, our greedy algorithm says that we should schedule i first, but S scheduled j first.
Our algorithm is the unique schedule with no inversions (assuming no ties).
We want to prove that there is an optimal solution which has no inversions.
Base Case: There are $C(n, 2)=\frac{n \cdot(n-1)}{2}$ pairs of jobs, and thus $C(n, 2)$ possible inversions. Therefore there is an optimal solution with $\leq C(n, 2)$ inversions.

Inductive Hypothesis: Assume there is an optimal solution with $\leq k$ inversions. (Call it OPT).

Now we need to prove there is an optimal solution $O P T^{\prime}$ with $\leq(k-1)$ inversions.

Note that if you're uncomfortable doing induction "backwards", you could just as well argue how many inversions are "missing". Your base case would be that there is an optimal solution missing at least 0 inversions, you'd assume there is an optimal solution missing $\geq k$ inversions, and then argue there is an optimal solution missing $\geq(k+1)$ inversions. $\quad f_{i}^{\prime}=f_{j}$

Case 1: there is a consecutive inversion $(i, i+1)$.

Our algorithm schedules $i+1$ first, but $O P T$ scheduled i first. We want tor remove this $\Rightarrow L^{\prime \prime} \leq L_{j}$ inversion, so swap their positions to produce $O P T^{\prime}$. This will have one less inversion, which will contradict our assumption if we can show that $O P T^{\prime}$ is still a valid optimal solution. i' and J finish at Prove that $O P T^{\prime}$ is still valid (this one is easy), and prove that $O P T^{\prime}$ is still optimal (this i has later dod one is hard).

Therefore, this inversion $1 i j j$
once removed, maintains optimality No

- How does the lateness of task $i+1$ change from $O P T$ to $O P T^{\prime}$?
smaller
- How does the lateness of task $i+1$ in $O P T$ compare to the lateness of task i in $O P T^{\prime}$?
- Why is $O P T^{\prime}$ optimal?

[类比bubblesort (2)
Case 2: there are inversions, but none of them are consecutive.

opt' is still optimal
Let $(i, i+k)$ be the smallest inversion, where $k>1$. There is a contradiction in this information: where is it?
case 2 is impossible

CSCI 270 Lecture 16：Optimal Caching

A cache can store n items．There is a sequence of m requests $d_{1}, d_{2}, \ldots, d_{m}$ known in advance． If an item is requested which is not in the cache，it must be brought into the cache，resulting in a cache miss．You may only bring something into the cache when it is requested．The goal is to minimize the number of cache misses．

－Can you find any counter－examples to these algorithms？
－How is this problem different than the standard version of Caching？那个不知道 future

Base Case：There is an optimal solution that has the same cache contents as we do through the first 0 requests．

Inductive Hypothesis：There is an optimal solution $O P T$ that has the same cache contents as we do through the first k requests．

Request $k+1$ is the first request at which the cache contents of $U S$ and $O P T$ differ．
－What must happen at request $k+1$ ？There must be a cache miss at time $k+1$

At request $k+1, U S$ kicks out o_{1} ，while $O P T$ kicks out o_{2} ．Otherwise，the cache contents are completely identical．

Let＇s look at what $O P T$ does in the future and see when this change in cache contents becomes relevant．There are many things which can happen for which the change in cache contents has no bearing．If there is a request on o_{3} ，for example，it doesn＇t matter which of o_{1} or o_{2} we kicked out．If $O P T$ removes o_{3} for d_{j} ，it doesn＇t matter which of o_{1} or o_{2} we kicked out．
－What events can occur which makes the different cache contents relevant？
request for af，request for do，OPT may remove d_{f} 其他情况DPT和俯是一样的
－Which of these events could conceivably happen first？没想到
request for do or OPT removes of \Rightarrow 分类讨论 $>$ only care about the first event
We will refer to the first of these events as having occured at request j ．

$$
\begin{aligned}
& \text { 除了 } k+1 \\
& \text { 假没斯每一步变化OPT都和OPT 一样 } \\
& \Rightarrow \text { 为了证明 F泎的 } k+1 \text { 那一步可以SOPT-样OPtimal }
\end{aligned}
$$

We want to make an exchange，thereby transforming $O P T$ into $O P T^{\prime}$ ．We want $O P T^{\prime}$ to have the same number of cache misses as $O P T$ ．We also want $O P T^{\prime}$ to be identical to $U S$ through $k+1$ requests．

\ldots	$d f$	d_{0}	d_{0}		
$O P T^{\prime}$	Request k	o_{1}	o_{2}	o_{3}	\ldots
	Request $k+1$	d_{k+1}	o_{2}	o_{3}	\ldots
	\ldots				
	Request $j-1$	d_{k+1}	o_{2}	o_{3}	\cdots
	Request j	d_{k+1}	d_{j}	0_{3}	\ldots
	\ldots				we

OPT＇can do whatever it wants to fit itself

What should $O P T^{\prime}$ do at request j ？
\Rightarrow 所以如果k＋1按下作的选，FIF的解也存在与OPT一样答案的解
Case 2：There is a request on o_{2}

OPT has to kick something out for o_{2} ，we will say it kicks out the here－to－fore unmentioned O_{3} ．

We want to make an exchange，thereby transforming $O P T$ into $O P T^{\prime}$ ．We want $O P T^{\prime}$ to have the same number of cache misses as $O P T$ ．We also want $O P T^{\prime}$ to be identical to $U S$ through $k+1$ requests．

－What would we like $O P T^{\prime}$ to do this at this request？
kick out de for $d f$
－Does this break any rules？
不能，因为无cache miss
We will delay the exchange until an event occurs．$O P T^{\prime}$ has o_{3} ，but $O P T$ has o_{1} ．The cache contents are otherwise identical．The possible events are：
－Something $\left(o_{4}\right)$ is removed for o_{3} ．We now plan to kick out o_{4} at the next event，instead of o_{3} ．We avoid a cache miss，meaning that $O P T$ wasn＇t even optimal．
－o_{1} is removed for something．We kick out o_{3} instead．We avoid a cache miss．
现在requert af 是可能的care，因为 request do 已发生
－o_{1} is requested．Now we kick out o_{3} as originally planned．We simply delayed our cache miss：it occurs for both solutions，but at different times．
－OPT removes 0, for isth else
we can have OPT＇remove O_{3} for the same thing

OPT＇doesn＇t follow greedy criteria
\Rightarrow 我们以证明了作在k＋1的解存在opromal的了能性未记下作一定 optimal？

Divide and Conquer

Divide and Conquer is a runtime improvement technique. Generally, we have a basic brute-force/greedy/dynamic-programming algorithm, and then we attempt to improve our performance using Divide and Conquer.

Both MergeSort and QuickSort are examples of Divide and Conquer algorithms. You take the input, split it into pieces, recursively solve each piece, and then figure out how to combine the pieces together. Typically the combine phase is the difficult part.

Divide and Conquer recursion is completely different than Dynamic Programming recursion.

- DP is sequential (make the first decision, then recursively make the next decisions).
- Divide and Conquer recursion is parallelized: we split it up into several independent pieces which can be solved in parallel.
- DP recursion can be unrolled into a more efficient iterative algorithm.
- Divide and Conquer recursion cannot be unrolled in a straight-forward manner (it can often be done, but it is usually more trouble than it's worth).

Divide and Conquer：parallelized recursion
Eruntime improving technique no reason to get rid of reunion can be applied to other algorithms］

$$
\begin{aligned}
& \text { DP: } \text { sequential recursion } \\
& \text { getting rid of recursion } \rightarrow \text { much faster } \\
& \text { 尝试顺序: DP } \rightarrow \text { greedy } \rightarrow \text { divide and conquer }
\end{aligned}
$$

SCI 270 Lecture 17：Divide and Conquer

Counting Inversions

You＇re writing the software for Pandora270．A user ranks n songs，and you want to find other users with similar tastes in music（and recommend music based off these matchings）．

Suppose there are 5 songs，conveniently named $1,2,3,4,5$ ，which I have ranked in that order．You have ranked them in order 1，3，4，2， 5 ．

How similar are our tastes？In one sense，we have only ranked two songs in the same slot． However，if you look more closely，you＇ll see we only disagree on one song：song 2.

An inversion is a pair of songs i and j such that one user ranks $i<j$ and the other ranks $i>j$ ．How many inversions are there in the above example？
$\langle 2,3\rangle\langle 2,4\rangle$ rout of $10=80 \%$ similarity
We want to count the number of inversions between two different rankings．For simplicity， we assume that one of the rankings is the numbers 1 through n in increasing order．

We could just solve this in $\theta\left(n^{2}\right)$ time using a brute－force count．Instead，we will use Divide and Conquer to improve our running time．

Your ranking：
154810269121137
$1548102 \mid 69121137$（Divide：O（1））
5 inversions｜ 8 inversions（Recursively Solve！ $2 f\left(\frac{n}{2}\right)$ ）

1．Whats our base case？
one song： 0 inversion
2．Can we just return $5+8$ ？
No．There can be inversicus span accross the border．
3．How long does our combine phase take？
$\theta\left(\left(\frac{n}{v}\right)^{2}\right)$
4．What＇s the resulting recurrence relation？
$f(n)=2 f\left(\frac{n}{2}\right)+\theta\left(n^{2}\right)$
5．What＇s the overall runtime of our algorithm？

$$
\theta\left(n^{2}\right)
$$

Often your first attempt at a Divide and Conquer algorithm will net no improvement．That doesn＇t mean Divide and Conquer won＇t work，it simply means you need to improve a part of the algorithm．


```
    llllllllllllllllllll
```



```
=>5+8+9=22 inversions in total
```

1．How can we improve the combine phase？
perform the inversions（sort white counting inversions）
改变的信息是已存的各块 inversion 个数
\Rightarrow merge－sort and count－inversions
合并时数字正位，向在移时越过几位就加几
2．What＇s the recurrence relation now？
$f(n)=2 f\left(\frac{n}{2}\right)+\theta(n)$
3．Whats the overall runtime？
$\theta(n \log n)$

All Pairs Shortest Paths Strikes Back

We want to find the shortest path between all pairs of points（we＇ll return $n(n-1)$ different answers，one for each pair）．

Let $A S P[i, x, z]=$ the length of shortest path from x to z using no more than i edges．
$A S P[i, x, x]=0$
$A S P[0, x, z]=\infty$
$A S P[i, x, z]=\min _{(x, y) \in E}\left(c_{(x, y)}+A S P[i-1, y, z]\right)$
shortest path：$\theta(\mathrm{nm})$
其实找了从大出发到所有点的最短路径

1：For $i=0$ to $n-1$
2：For all nodes z
3：\quad For all nodes x
4：\quad Calculate $\operatorname{ASP}[i, x, z]$

We can argue the last loop takes $\theta(m)$ time，and there are n iterations for the other loops， so the runtime is $\theta\left(m n^{2}\right)$ ．
－If we＇re at node x and we need to get to node z ，the dynamic programming way is to find the next node after x that we visit．What would the divide and conquer way be？
Find the middle mode
－Using this idea，what would our new recursive formula be？Base case：Asp $[1, x, y]=\cos +(x, y)$ $\operatorname{ASP}[i, x, y]=\min _{y \in v}\left[\operatorname{ASP}\left[\left\lceil\frac{i}{3}\right\rceil, x, y\right]+\operatorname{ASP}\left[\left\lfloor\frac{i}{2}, y, z\right]\right]\right.$
－What values of i do we need to iterate over？

$$
0 \text { to } n-1
$$

－What would our runtime for this algorithm be？

$$
\begin{aligned}
& \text { for } i=0 \text { to } n-1 \\
& \text { for all nodes } z \Rightarrow \theta\left(n^{4}\right) \\
& \quad \text { for all nodes } x \\
& \quad \theta(n)
\end{aligned}
$$

we can gust paste 2 parts together

$$
\operatorname{ASP}[c, x, y]=\min _{y \in V}[\operatorname{ASP}[c-1, x, y]+\operatorname{ASP}[c-1, y, z]]
$$

才是真正意义上对半 divide

ASP $[c, x, z]=$ length of shortest path from x to Z using $\leq 2^{c}$ edges for $c=0$ to $\log n$
for all nodes $z \quad \Rightarrow \theta\left(n^{3} \log n\right)$
for all nodes x
$\theta(n)$

Floyd－Warshall

$=4+4$ 的解

$=8+8$ 的解

CSCI 270 Lecture 18：The Return of Sequence Alignment

Integer Multiplication

1．Elementary Math time！How do you calculate $12 \cdot 13$ ？$=156$
2．How would a computer calculate it？binary
3．What is the running time to multiply two n－bit integers？$\theta\left(n^{2}\right)$

We＇re going to try to use Divide and Conquer to improve on this．
Let $x=x_{F} \cdot 2^{\frac{n}{2}}+x_{L}$ ，where x_{F} is the first $\frac{n}{2}$ bits of x ．Similarly，$y=y_{F} \cdot 2^{\frac{n}{2}}+y_{L}$ ．
$x y=x_{F} y_{F} \overrightarrow{2^{n}}+\left(x_{F} y_{L}+x_{L} y_{F}\right) \overrightarrow{2^{\frac{n}{2}} \overrightarrow{+} x_{L} y_{L} \text { 计算 } 2^{n} \text { 。只用移位 } \Rightarrow \text { 相加是 } \theta(n) ~}$
$x y=x_{F} y_{F}\left[2^{n}\right]+\left(x_{F} y_{L}+x_{L} y_{F}\right)\left[2^{\frac{n}{2}}\right]+x_{L} y_{L}$
n bit $\times n$ bit $\Rightarrow 4$ 个（ $\frac{n}{2}$ ）bit $\times\left(\frac{n}{2}\right)$ bit 的和
1．What＇s our base case？only I bit
2．What is the recurrence relation here？$f(n)=4 f\left(\frac{n}{2}\right)+\theta(n)=\theta\left(n^{2}\right)$
$M_{1}=x_{F} y_{F}$
$M_{2}=x_{2} y_{c}$
$M_{B}=\left(x_{F}+x_{L}\right)$ ．
3．What would our runtime be？$\theta\left(n^{2}\right)$
$\left(y_{F}+y_{L}\right)$
4．What part of our algorithm needs improvement？
$\Rightarrow x_{F} y_{L}+x_{l} y_{F}=M_{3}-M_{C}-M_{2} \quad\left(\frac{n}{2}+1\right) b_{i \sigma} \cdot\left(\frac{n}{2}+1\right) b_{D 7} \quad f\left(\frac{n}{2}+1\right) \approx f\left(\frac{n}{2}\right)$
5．How can we improve it？Hint：What is $\left(x_{F}+x_{L}\right)\left(y_{F}+y_{L}\right)$ ？

$$
\begin{aligned}
&=x_{F} y_{F}+x_{L} y_{L}+x_{F} y_{L}+x_{L} y_{F} \\
& \Rightarrow x y=\frac{x_{F} y_{F}}{M_{1}} \cdot 2^{n}+\frac{\left(x_{F} y_{L}+x_{L} y_{F}\right) \cdot 2^{\frac{n}{2}}}{M_{3}-M_{1}-M_{2}}+\frac{x_{L} y_{L}}{M_{2}} \quad f(n)=3 f\left(\frac{n}{2}\right)+\theta(n) \\
& \quad \Rightarrow f(n)=\theta\left(n^{\log _{2} 3}\right) \approx n^{1.57}
\end{aligned}
$$

The Return of Sequence Alignment

The edit distance between two strings is the minimal distance possible between two strings after inserting your choice of spaces．Our goal is to efficiently calculate the edit distance between X and Y ．

每一次计算只需要工条相关的，但如果边算边删就不能trace
Define：$S A[i, j]$ is the min cost of aligning strings $x_{i} x_{i+1} \ldots x_{n}$ and $y_{j} y_{j+1} y_{m}$ ．
$S A[i, j]=S A[i+1, j+1]$ ，if $x_{i}=y_{j}$
$S A[i, j]=1+\min (S A[i+1, j], S A[i, j+1], S A[i+1, j+1])$ ，if $x_{i} \neq y_{j}$ ．
$S A[i, m+1]=n-i+1$
$S A[n+1, j]=m-j+1$

1：For all $i=n+1$ to 1
2：For all $j=m+1$ to 1
3：\quad Calculate $S A[i, j]$
Runtime：$\theta(m n)$
Space：$\theta(m n)$
To improve the space requirements，we can toss out old columns when they no longer are relevant．We keep the last two columns only，thereby reducing the space requirement to $\theta(m+n)$（the size of the input，which you can＇t improve on）．The drawback is you cannot reconstruct the answer，which is a deal－breaker for certain applications．

We will instead use Divide and Conquer to get the best of both worlds．The high level idea is to find the optimal midpoint：

 data（the column which is calculated last），which tells us the optimal matching of the second half of X with any possible suffix of Y ．

We want to run Sequence Alignment on $X=x_{1} \ldots x_{\frac{n}{2}}$ and all of Y to get the other half of the equation．We want to find the optimal matching of the first half of X with any possible prefix of Y ．
－If we run this normally，you would find the optimal matching of the first half of X with any possible suffix of Y ．
－We＇ll reverse Y so that we＇re matching a prefix of Y ，rather than a suffix of Y ．
－This twists everything around，however．The first half of X will be matched with the mirror image of Y ．

combine 两条
\Rightarrow minimize sum of 2 parts
runtime：$m \cdot \frac{n}{2}$
space：$m+\frac{n}{2} \rightarrow$ 只存两条因为要留的信息
$\approx m+n \quad$ 只有 optimal midpoint

第一以：$m n$
divide－次后：$\frac{m n}{2}$
divide两以：$\frac{m n}{4}$

Run Sequence Alignment on $X=x_{\frac{n}{2}} x_{\frac{n}{2}-1 \ldots x_{1}}$ and $Y=y_{m} y_{m-1} \ldots y_{1}$ ．Save the first column of data（the column which is calculated last），which tells us the optimal matching of the first half of X with any possible prefix of Y ．

$$
\rightarrow \text { 就是加对应的 } y_{j} \Rightarrow \text { 也就是我们要的traving }
$$

Find the optimal midpoint，and recursively repeat the algorithm！
第二层 muntime：$k \cdot \frac{n}{2}+(m-k) \cdot \frac{n}{2}=m \cdot \frac{n}{2}$ ；第三层：$k \cdot \frac{n}{4}+(i-k) \cdot \frac{n}{4}+(j-i) \cdot \frac{n}{4}+(m-j) \cdot \frac{n}{4}=m \cdot \frac{n}{4}$

Closest Points on a Plane

runtime：$m n+m \cdot \frac{n}{2}+m \cdot \frac{n}{4}+\cdots=2 m n$
Given n points on a plane（specified by their x and y coordinates），find the pair of points with the smallest euclidean distance between them．

1．What runtime can you achieve simply using brute－force？$\theta\left(n^{2}\right)$
2．Using Divide and Conquer，how should we divide the plane？make－半在 $\varepsilon_{\text {，－半在右 }}$
3．What do we need to do in our combine phase？check distance
4．What＇s the recurrence relation for our algorithm？$f(n)=2 f\left(\frac{n}{2}\right)+\theta(n)=\theta\left(n^{n}\right)$
5．What runtime does this achieve？$\theta\left(n^{2}\right)$

Let δ be the min distance between any pair so far．Instead of comparing all pairs of points on each side，we will instead only look at points within δ of the boundary．

What＇s the worst－case runtime for our new algorithm？$\theta_{(n)}$ 因为可能所有点都在这个区间内
Instead of comparing all pairs of points within δ of the boundary，we will only compare points if their y－coordinates are within δ of each other．
What＇s the worst－case runtime now？
take all x sont by $x \rightarrow \theta$（nlogn）
take all y ．Sort by $y \rightarrow \theta(n \log n)$

CSCI 270 Lecture 19：Network Flow

Network Flow

We have a weighted directed graph $G=(V, E)$ ，where the edge are＂pipes＂and their weight is their flow capacity．These values measure the rate in which fluid／data／etc can flow through the pipe．What is the maximum rate that flow can be pushed from s to t in the above graph？

Each edge e has capacity $c(e)$ ．An s－t flow is a function f which satisfies：
max－value flow：max amount of flow from s to t
流量限制1． $0 \leq f(e) \leq c(e)$ ，for all e（capacity）．
C只进不出 1 只出不进
流量守恒 2．$\sum_{(x, v)} f((x, v))=\sum_{(v, y)} f((v, y))$ ，for all nodes $v-\{s, t\}$（conservation）．
sum of incoming flow $=$ sum of ontgoing flow
The value of a flow is $v(f)=\sum_{(s, x)} f((s, x))$

An $s-t$ cut is a partition of the nodes into sets $(A, V-A)$ ，where $s \in A$ and $t \in V-A$ ．
The cutset is the set of edges whose origin is in A and destination is in $V-A$ ．
The value of an $s-t$ cut is equal to the sum of the capacities of the edges in the cutset．
Problem Statement：Find the minimum cost $s-t$ cut．

1．What is the value of the mincut in the previous graph？ 7
2．Anyone think this is a coincidence？

```
not a comilidence
```

Weak Duality：Given a flow f and an $(A, V-A)$ cut，$v(f) \leq$ the value of the cut．
Corollary to Weak Duality：If $v(f)=$ the value of the cut，then f is a max－flow，and $(A, V-A)$ is a mincut．value of mincut 决定 max－flow 的上限
\｛ The remaining question is，can this always be done？Is there always a flow and cut with equal values？
Let＇s try to solve the max－flow problem using a greedy algorithm．We＇ll just choose arbitrary $s-t$ paths that have a remaining capacity，and route as much flow as possible along this path．

Given the original graph G ，and the flow so far f ，you can construct the residual graph G_{f} ， which contains two types of edges．

到这儿停了，因为nomore s－t path
－Forward edges (u, v) ，which have capacity equal to the original capacity $c(u, v)$ minus the flow along the edge $f(u, v)$ ．$C_{F}(\langle u, v\rangle)=c(\langle u, v\rangle)-f(\langle u, v\rangle)$
－Backward edges (v, u) ，which have capacity equal to the flow along the edge in the opposite direction $f(u, v) . C_{F}(\langle u, v\rangle)=f(\langle v, u\rangle)$

Forward edges indicate you can still augment the flow along that edge．Backward edges indicate that you can＂take back＂your choice to push flow along that edge and find a better solution．

Why was this a valid thing to do？Are the two rules of flow maintained if we push flow ＂backwards＂？主要是流量守担．take steps bauk 对于点来说是redireat mputloutput flow，但数量不变 $3 \rightarrow 2$
（1）The Ford－Fulkerson algorithm looks for an augmenting path on the residual graph（that is，a path from s to t where you can push more flow），pushes the maximum possible amount of flow along that path，and repeats until there are no more paths．

Augmenting Path Theorem：f is a max flow iff there are no s－t paths in G_{f} ．
Max－flow Min－cut Theorem：The value of the max flow equals the value of the mincut．最大流最小割定理

不会出现反向从border回来的情况不然 $G f$ 上应有对应的 edge那爪应 $\in A$

We will prove the following three statements are equivalent：
故这些 cut 都reach their capacity

1．There is a cut $(S, V-S)$ such that $v(f)=$ the capacity of the cut．
2．f is a max flow．
\therefore value of ont $=$ value of flow
\Rightarrow max flow，min out
3．There is no st path in the residual graph G_{f} ．
$1 \rightarrow 2$ ：We＇ve already proven this．
$2 \rightarrow 3$ ：Proof by contraposition．If there is an s－t path in G_{f} ，then we can augment the flow， which means f is not a max flow．$\neg 3 \rightarrow \neg 2$ ，which means $2 \rightarrow 3$ ．
$3 \rightarrow 1$ ：Let f be a flow with no augmenting path．Let A be the set of vertices reachable in G_{f} from s ．Note that $s \in A$ and $t \in V-A$ ．This forms a cut of value equal to the flow！

Thus Ford－Fulkerson optimally solves Network Flow．

Algorithm for Min－Cut

1：Run Ford－Fulkerson on the graph．
2：Create the resulting residual graph G_{f}
3：Let $A=$ the set of nodes reachable from s in G_{f}
4：Return $(A, V-A)$
Integrality Theorem：If all capacities are integers，there is a max flow f where every value $f(e)$ is an integer．（因为每以都 push max flow，所以一直为整数）

Let＇s analyze the running time of Ford－Fulkerson．The capacities of edges will be integers between 1 and C ．

$$
I_{\text {max capacity }}
$$

1．Each time we do an augmentation，what is the minimum amount the total flow increases by？।

$$
\text { For every s-t path, pushes } \geqslant 1 \text { unit flow }
$$

2．How many total augmentations might we need？max flow $\leq \underline{n} C$
3．How long should it take to find an augmenting path？$\theta(m+n)=\theta(\mathrm{m})$
4．What is the runtime？$\theta(m n C)$ worst：repeat find $s-t$ path and push one flow each time
$\Rightarrow \theta(m \cdot n c)$ push ne times \Rightarrow find the path ne times，
5．Is this a polynomial runtime？pseudo polynomial $\underset{\text { DFS earn time }}{\Rightarrow}$ pus
6．Is it actually possible for the runtime to be this bad？Yes

Recap

- Max-flow:
- Min-cut (actual)
- Ford-Fulkerson : runtime: $\theta(m n C)$ psendo-poly
- improvement? \{choose a path with max capacity
choose a path with fewest edge
choose a path with big enough capacity \Rightarrow caparity-scaling

Find a smitably－large s－t path

Capacity－Scaling

$$
\text { 只用 } \geqslant \Delta \text { 的edge }
$$

Let $G_{f}(\Delta)$ be the subgraph of G_{f} consisting only of edges with capacity $\geq \Delta$ ．

－What would $G_{f}(\Delta)$ look like for this graph if $\Delta=16$ ？only 2 edge show up
－Are there any $s-t$ paths on $G_{f}(16)$ ？no
－What would $G_{f}(8)$ look like？
－Are there any $s-t$ paths on $G_{f}(8)$ ？yes
－What does G_{f} look like after we＇ve augmented the flow？
－What does $G_{f}(8)$ look like at this point？
－What does $G_{f}(4)$ look like？ $12+7+4=23$
Ford－Fulkerson With Capacity－Scaling
1：Let $\Delta=2^{i}$ for max i such that $\Delta \leq C$ ．
2：While $\Delta \geq 1$

3：Augment the current max flow using Ford－Fulkerson on $G_{f}(\Delta)$ ．
4：$\quad \Delta=\frac{\Delta}{2}$

Now we will analyze the runtime of our algorithm．
We＇ll refer to each iteration as a phase．We need to figure out how many phases there will be，we need to figure out how long it takes to find a path on $G_{f}(\Delta)$ ，and we need to figure out how many paths we might find in each phase．
－How many iterations will our algorithm have？
$\log _{2} C$

- How long does it take to find a path on $G_{f}(\Delta)$? Why? total muntime: $\log c \cdot 2 \mathrm{~m} \cdot \mathrm{~m}$
$m \cdot m$ DFS
$=\theta\left(m^{2} \log c\right)$
So now we have to cap the number of paths we find in a phase.
Let f be the flow at the end of an iteration with Δ-scaling.
Let S be the set of nodes reachable from s in $G_{f}(\Delta)$.
Now consider G_{f}, which has additional edges of capacity $<\Delta$.
- Consider an arbitrary edge passing from S to V-S on G_{f}. What is the max amount of flow we could push along this edge?
- How many edges could pass from S to $V-S$? m
- How much flow could we conceivably be missing at this point in time? $m \cdot(\Delta-1)$

Remember, we just finished the Δ-scaling phase. So in the next phase, we will consider $G_{f}\left(\frac{\Delta}{2}\right)$.

- Suppose we find a new $s-t$ path when considering $G_{f}\left(\frac{\Delta}{2}\right)$. What is the minimum amount of flow we will be able to push along this path? $\frac{\Delta}{2} \leq G f\left(\frac{\Delta}{2}\right) \leq \Delta-1$
- How much flow did we say we might be missing at this point in time? Δm
- How many paths can we find, maximum, during this phase? $\frac{(m-1) \Delta}{\frac{\Delta}{2}}=2 m$

Runtime for Ford-Fulkerson with Capacity-Scaling is $\theta\left(m^{2} \log C\right)$. Is this a polynomial run- Yes time? total runtrime: $\log c \cdot 2 m \cdot m=\theta\left(m^{2} \log c\right) \Rightarrow$ polyninial
Other network flow algorithms:

- Preflow-Push $=O\left(n^{3}\right)$
- Goldberg-Rao $=O\left(\min \left(n^{\frac{2}{3}}, m^{\frac{1}{2}}\right) m \log n \log C\right)$

A lot of problems can be "reduced" to max-flow

(Lary Algorithm)

CSCI 270 Lecture 21: Poly-Time Reductions

Minimum Cut(Graph G)

1: Find the max-flow f and the residual graph G_{f}
2: Find the set of nodes A reachable from s on G_{f}
3: Return A
What is the runtime of Minimum Cut?
The runtime of Minimum Cut depends on the runtime of Maximum Flow! If someone finds a better Max-Flow algorithm, they will simultaneously improve the best known Min-Cut algorithm!

Min-Cut is not the only problem like this. There are a lot of problems for whom the runtime bottleneck is Max-Flow. This is why the research community has spent so much time trying to improve the existing Max-Flow algorithms.

This is called a reduction. In a reduction you take a problem you do not know how to solve, and turn it into a problem you do know how to solve.

In a poly-time reduction, the reduction takes no more than polynomial-time. This is also written: MinimumCut \leq_{p} NetworkFlow. Or: Minimum Cut is poly-time reducible to Network Flow.
$A={ }_{p} B$: A problem A can be reduced to another problem B in poly-time processing

- If $A \leq_{p} B$, and B is poly-time, what can we state about the running time for A ? A can be solved poly-time
- If $A \leq_{p} B$, and A is poly-time, what can we state about the running time for B ? Nothing can be said about B
So, by reducing Minimum Cut to Network Flow in polynomial time, we have proven that Minimum Cut is also solvable in polynomial time!

Now that we know Minimum Cut has a polynomial time algorithm, if we can give a poly-time reduction from some problem X to Min-Cut, we can determine that X has a polynomial-time algorithm as well.

Let P be the set of problems with polynomial time solutions. If we want to show a problem is in P, we either write a poly-time algorithm for it, or we reduce it to a problem we already know is in P.

```
    p np ->none-polytime
\downarrow
polytime
```


Bipartite Matching

We are given an undirected bipartite graph $G=(L \cup R, E)$ ．

$M \subseteq E$ is a matching if each node appears at most once in M．Find the max－size matching．
－What is the largest－sized matching you can find？
－Why can＇t there be a larger matching？

A perfect matching includes every node．This instance cannot have a perfect matching．
We could try to come up with our own algorithm to solve this problem，but that sounds like too much work．Instead we＇re going to be lazy，and use an existing algorithm．Namely， we＇ll use Ford－Fulkerson．

To use Ford－Fulkerson，we have to transform the current graph into a network flow graph． In addition，it must be done in such a way that the solution to the network flow graph helps us find the max－sized matching．
－What components are missing in this graph，which are needed in a Network Flow graph？S，t，capacity
－How should we transform our graph into a Network Flow graph？
－How do we extract the answer to Bipartite Matching once we＇ve solved Network Flow？ $=$ Max－flow from to t
So，by reducing Bipartite Matching to Network Flow in polynomial time，we have proven that Bipartite Matching is also solvable in polynomial time！

Now that we＇ve reduced Bipartite Matching to Network Flow，Bipartite Matching is a valid problem to reduce to as well．You could reduce some new problem $C \leq_{p}$ Bipartite Matching to show C is poly－time solvable．

$$
\begin{array}{lll}
\theta(m n C)=\theta(m n) & - \text { 只狗只能 adopt -以 } & \text {-户人只能养只驹 } \\
& s \rightarrow \log c=1, & \text { home } \quad c t \quad c=1
\end{array}
$$

（4）explanation：1）if there is a flow of x ，then there is matching of size x

$$
\Rightarrow \text { Vf 充要 }
$$

(2) if there is a matching of size，then there is a flow of x intuitive explanation：

Why this algorithm gains maximized matches？
Proof：
I．If there is a flow x in G^{\prime} ，the edges with flow form a valid matching because each node can be passed by at most 1 mit of flow
II．if there is a match in G ，thee is a flow x in G^{\prime}
不允许重复node \Rightarrow 每 4 node 久能在一个 path
ヌン每4 node 㨢在一4 pair里
\Rightarrow \＃of matching $=$ maximum flow（\＃of path with weigh 1）

Design Template (Reduction to max-flow G)

1. Construct a network from a given graph (Eg: crease modes and t, \ldots)
2. Explain how to extract solution from an obtained max -flow (flow \rightarrow matching)
3. Explain size x solution in max -flow implies size x solution in your problem flow \rightarrow matching
4. Explain size x solution in your problem implies size x salnion in max flows matching \rightarrow flow

Circulations

We are given a directed graph G ，with edge capacities $c(e)$ ，for all $c \in E$ ．
Each node has an integer demand $d(v)$ ．If $d(v)<0$ ，then we say that this node has a supply．

A circulation is a function f which satisfies：

1． $0 \leq f(e) \leq c(e)$ ，for all e
2．$\sum_{(x, v)} f(x, v)-\sum_{(v, y)} f(v, y)=d(v)$

－Is there a circulation that satisfies these constraints？yes
－What components are missing in this graph，which would be needed in Network Flow？
－What components are in this graph，which must be removed in Network Flow？
－How should we transform our graph into a Network Flow graph？
－How can we extract the answer for Circulations，once we＇ve solved Network Flow？把 S, t 和相关的edge 删去；剩下的为所需的部分

Circulations with Lower Bounds

Suppose edges have lower bounds $l(e)$ ．The new capacity rule is：$l(e) \leq f(e) \leq c(e)$

circulation of lowerbound s_{p} circulations
所转换成的：（1）netflow（2）min－cut（3）bipartite－matching
© 4 circulation（5）circulation with lower bounds
－Is there a circulation that satisfies these constraints？
－What problem should we reduce to？（Hint：NOT Network Flow！）
－What components are in this graph，which must be removed？
－How should we transform our graph？
－How can we extract the answer for Circulations with Lower Bounds？

You may reduce to Network Flow，Bipartite Matching，or Circulations with or without lower bounds．You may reduce to other problems in P as well，but this is a unit on Network Flow， so it will be most fruitful to focus on those problems．

Important：don＇t mix up your problems．For example：Network－Flow with lower bounds is NOT a problem we have shown to be in P．You must do Circulations with lower bounds，or Network Flow without lower bounds．

Extra Problems：
－Chapter 7，exercises $8,11,12,14,24,27,29$
－Challenge problems：Chapter 7，exercises 22， $41 \rightarrow$ 然后解这个图的circulation

CSCI 270 Lecture 22：Poly－Time Reduction Examples

Survey Design

There are n customers $\left\{c_{1}, \ldots, c_{n}\right\}$ and m products $P=\left\{p_{1}, \ldots, p_{m}\right\}$ ．Customer c_{i} owns a subset of the products $S_{i} \subseteq P$ ．

We want to design a survey which gets feedback on all of our products：we must ask at least $q p_{i}$ questions（to get meaningful feedback）and no more than $q p_{i}^{\prime}$ questions（because the questions would become redundant）about product p_{i} ，and we can only ask questions to customers which own p_{i} ．

Lastly，we must ask at least $c p_{i}$ questions to customer i（to avoid wasting their time）and no more than $c p_{i}^{\prime}$ questions（to keep the survey a reasonable length．Give a polynomial－time algorithm to design such a survey or find that no such survey exists．$\quad \rightarrow$ 对何问无数个关于阬的问题
start by making a graph
－What problem should we reduce to？
－How should we transform survey design？
－Are there any problems with the transformation？不知道了和七的 demand
－How can we fix this problem？
但 S 的 demand $=t$ 的 supply
（1）可＋edge from t to $s \rightarrow$ 转为 circulation
（2）3）转为 max－flow s 和 t 的 demand $=0$
（把 lowerbound 化解掉）然后 flow wedge from $t \rightarrow s$ 就是井 of question asked

Figure 1: XKCD \#1593. The thrower started hitting the bats too much, so the king of the game told him to leave and brought out another thrower from thrower jail.

Baseball Elimination

Team	Wins	LA	Col	SF	Ari	SD
Los Angeles	90	0	0	0	7	4
Colorado	88	0	0	0	0	1
San Francisco	87	0	0	0	0	4
Arizona	86	7	0	0	0	4
San Diego	75	4	1	4	4	0

You want to determine if a team can end up with the most wins at the end of the season (or tied for most wins, forcing a playoff).

- Which teams are clearly eliminated?
- There is another team that is also mathematically eliminated: which one?

We want to design a poly－time algorithm that determines whether a specific team has been mathematically eliminated．For this example，let＇s consider San Francisco．It＇s not clear off－hand which problem to reduce to，but that＇s not an issue，because they＇re all graph problems：we can start by creating a graph and then decide which problem we＇re reducing to later．The flow will probably indicate who wins which games．
－What nodes should we add to this graph？
－Should we include San Francisco in our graph，or do we already know how to allocate their games？

We need to make sure that only teams involved in a matchup can win that specific game． We＇ll therefore add a node for each matchup．
－How should we finish our transformation？
－What problem are we reducing to？
－How do we extract the answer？

Project Selection

We have a set of n projects $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with values $v_{1}, v_{2}, \ldots, v_{n}$（the values may be negative）．

$$
\begin{aligned}
& \text { (co-requisite) } \\
& \text { of prerequisites } S_{i} \subset P \text {. 如果有cycle, Just do all nodes in the cycle }
\end{aligned}
$$

Project i has a set of prerequisites $S_{i} \subseteq P$ ．
If we decide to do project i ，we get value v_{i} ，but we must also do all projects in S_{i}（and some of them may have negative values）．make all pre－repusite $\infty \quad \rightarrow$ invalid answer

Find max－valued subset of projects to do．

$v_{1}=2, S_{1}=P_{2}$
$v_{2}=-3, S_{2}=P_{4}$
$v_{3}=5, S_{3}=P_{2}, P_{4}$
$v_{4}=-3$
$v_{5}=2, S_{5}=P_{4}, P_{6}$
$v_{6}=-3$

$$
\begin{aligned}
& \text { s pointing to projects } \\
& \text { with negative values } \\
& \text { (这样 ant } \\
& \text { 的时候, } \\
& \Rightarrow \text { 明做 } 3 \text { project, } \\
& \Rightarrow \text { lose points: }+3+3+3 \text {) }
\end{aligned}
$$

－What is the total value if we do all projects？
－What is the total value if we do no projects？
－Is there a better subset of projects？
only positive volution：$p_{1}, p_{2}, p_{3}, p_{4}$
min－cut：sminization problem
2）partition problem
2 parts：projects we do
projects we dort

－We need to turn this into a graph．What should the nodes be？
－How should we encode the prerequisites？
－Would Bipartite Matching be a good problem to reduce to？
－Is there any problem with network flow？
－Would Circulations with Lower Bounds solve this problem？不能，こ要垥吅交的可不做
－Are there any problems left？
－How do we make sure that we don＇t select a project without its prerequisites？
－Which set specifies the projects we do and which we don＇t do？
－We need to add edges from s to certain projects．If we split one of these edges，what does that say about the project？
－We need to add edges from certain projects to t ．If we split one of these edges，what does that say about the project？
－We need to add the appropriate penalties to completing a project with negative value， and appropriate incentives to completing a project with positive value．How should we go about doing this？

Proof of correctness：

For every project with negative value in S ，we increase the value of the cut：
$\sum_{i \in S, p_{i}<0}-p_{i}$
We find a min－cut $(S, V-S)$ ．For every project with positive value in $V-S$ ，we increase the value of the cut：
$\sum_{i \in V-S, p_{i}>0} p_{i}$
Therefore the value of the cut we find is
$\sum_{i \in V-S, p_{i}>0} p_{i}+\sum_{i \in S, p_{i}<0}-p_{i}$
Let $C=\sum_{i: p_{i}>0} p_{i}$ ：the sum of capacities of edges outgoing from the source．Then：
$\sum_{i \in V-S, p_{i}>0} p_{i}=C-\sum_{i \in S, p_{i}>0} p_{i}$
Then the total value of our cut is the sum of these two values：
$C-\sum_{i \in S, p_{i}>0} p_{i}+\sum_{i \in S, p_{i}<0}-p_{i}=C-\sum_{i \in S} p_{i}$.
Since $\sum_{i \in S} p_{i}$ is exactly our profit，if we minimize $C-\sum_{i \in S} p_{i}$ then we maximize our profit． Thus，finding min－cut here really works！

SCI 270 Lecture 23：The Limits of Knowledge

Independent Set（max）

Given a graph G and an integer k ，is there a set of nodes $S \subseteq V$ such that $|S| \geq k$ ，and there are no edges between two nodes in S ？

$$
\begin{aligned}
& V C \leq p I S \\
& I S \leq p V C
\end{aligned}
$$

Vertex Cover（smallest）

Given a graph G and an integer k ，is there a set of nodes $S \subseteq V$ such that $|S| \leq k$ and every edge has at least one endpoint in S ？VCLG）\｛ we have an algorithm for $s c$ ，
$G \rightarrow$ sets
ans $=s C$（sets）
ans \rightarrow ans．
ans \rightarrow ans＇．We dost have an algorithm for $v e$
rectum ans．

Set Cover

We are given a set U of n elements，and m subsets $S_{1}, / S_{2}, \ldots, S_{m} \subseteq U$ ．Given an integer k ， is there a collection of $\leq k$ subsets whose union is equal to U ？

$$
U=\{1,2,3,4,5,6\}
$$

$$
S_{1}=\{1,2\}, S_{2}=\{2,3,5\}, S_{3}=\{2,4\}, S_{4}=\{4,5\}, S_{5}=\forall\{3,6\}, S_{6}=\{5,6\}
$$

we want to show set cover is hard by showing $V C \leq p S C$ A node \rightarrow set edge \rightarrow dement
The class NP tum node into set \leftarrow（解VL时用SC）choosing the set cover U

Suppose you have an Independent Set example which you have been unable to solve．Albert Einstein walks in，looks at it，and say＂Yes！There is an Independent Set of size k ，there it is！＂

How long would it take you to verify that Albert Einstein＇s answer is correct？
Suppose Einstein did the same for a Vertex Cover or Set Cover problem．How long would it take you to verify his solution is correct？$O(n)$

A verifier/certifier is like a grader. It does not come up with a solution on its own. It just verifies a given solution is correct.
P is the set of all problems with polynomial-time solutions.
$N P$ is the set of all problems with polynomial-time VERIFIERS.
$\mathrm{P}=$ Polynomial Time

NP $=$ Nondeterministic Polynomial Time
Effectively we are saying "If we could guess the solution, we could verify its authenticity in polynomial time".

- What problems have we seen that are in NP?
- Is Sorting in NP? yes

$$
\cos 475
$$

- Is $P \subseteq N P ?$ yes
- Are there problems which are not in NP?
- Is $P \subset N P$? mystery (we think 99% true)

$$
f
$$

Alright, let's suppose we want to prove it one way or the other. Here is a possible strategy:

1. Identify the "hardest" problem in NP.
2. Either give a polynomial algorithm for it, or prove no polynomial algorithm is possible.

It's not clear that there is a "hardest" problem in NP, but we should be able to formally define what it means to be the hardest problem in NP. What kind of traits do you suppose such a problem would have?

$$
\begin{aligned}
& \forall z \in N P \quad, \quad z \leq p \text { hardest problem } \\
& \\
& \text { leverything is reducible to the hardest problem) } \\
& \text { Cook-Lein Theorem early To's }
\end{aligned}
$$

Figure 1: Futurama, depicting $\mathrm{P} \neq \mathrm{NP}$.

Figure 2: The Simpsons, depicting $\mathrm{P}=\mathrm{NP}$.

Circuit-SAT

Given a combinational circuit of AND, OR, and NOT gates, is there a way to set the inputs such that the output is 1 ?
Is Circuit-SAT \in NP?
Claim: For any problem $x \in \mathrm{NP}, x \leq_{p}$ Circuit-SAT.

－A Turing Machine is a simple mathematical model of a computer．Anything a computer can do，a TM can do（but slowly）．TMs are not real things，they are a theoretical con－ cept．Because they are simple，we can formally prove what kinds of things computers can and cannot do．
－A nondeterministic computer is another theoretical concept which does not actually exist．It is effectively an infinitely parallel computer which can try all possible answers simultaneously．Thus，any problem in NP can be solved by a NTM in poly－time， because all it has to do is verify every possible answer in parallel．
－Computers are just circuits．It stands to reason then that we could take a TM and translate it into a circuit which contains the exact same logic．

Effectively：any problem in NP can be reduced to Circuit－SAT in poly－time．
Circuit－SAT is what is called an NP－complete problem：

1．Circuit－SAT \in NP
2．For all $x \in \mathrm{NP}, x \leq_{P}$ Circuit－SAT
Suppose we have another problem Y ，and we show：

1． $\mathrm{Y} \in \mathrm{NP}$
2．Circuit－SAT $\leq_{p} \mathrm{Y}$（假设已有Y的解，用其解出（ircuit－SAT）
What have we shown？Y is also WP－complete problem
Suppose we have another problem Z ，and we show：

1．$Z \in N P$
2． $\mathrm{Z} \leq{ }_{P}$ Circuit－SAT

What have we shown？

CSCI 270 Lecture 24：NP－Completeness

3－SAT

We have a set of n variables $x_{1}, x_{2}, \ldots, x_{n}$ ，and a set of m clauses $C_{1}, C_{2}, \ldots, C_{m}$ ．Each clause is a disjunction of exactly 3 variables or their negation，such as $C_{1}=\left(x_{1} \vee \neg x_{2} \vee x_{4}\right)$ ．
A 3－SAT formula is a conjunction of all clauses foms $C_{1} \wedge\left(V_{2} \wedge V^{-} v\right) \wedge(v v) \wedge(v v)$ $\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{4}\right)$ ．

We want to know if there is an assignment of boolean values to variables such that the formula evaluates to true．
－Is there a satisfying assignment for this example？
－Is 3－SAT $\in N P$ ？yes（mun through the formula to verify）
－What＇s wrong with the following reduction？circuit sAT $\leqslant_{p} 3-5 A T$

Reduction from Circuit－SAT to 3－SAT：
把 Cirmits SAT 转成 3－SAT的问题

1．Add variable names to every wire in the Circuit－SAT problem．$\quad x_{5} \equiv x_{3}$
八论 3-SAT的估果和 cirmiz-SAT的一致

$$
\left(x_{3} \wedge \neg x_{5}\right) \vee\left(\neg x_{3} \wedge x_{5}\right)
$$

2．Hard－code output：$C_{1}=\left(x_{6}\right)=\left(X_{6} \vee X_{6} \vee X_{6}\right)$
$\Rightarrow\left(x_{3} \vee x_{5}\right) \wedge\left(\neg x_{3} \vee \neg x_{5}\right)$
七 3．Transform not－gates．$x_{5}=\neg x_{3}$ becomes $C_{2}=\left(x_{3} \vee x_{5}\right)^{\mathrm{x}_{5}}$ and $C_{3}=\left(\neg x_{3} \vee \neg x_{5}\right) \vee \neg x_{5}$
translate：$\quad x_{4} \Rightarrow x_{6} \quad x_{5} \Rightarrow x_{6}$
eanh gave existy． $C_{6}=\left(\neg x_{6} \vee x_{4} \vee x_{5}\right)>\left(X_{6} \wedge\left(X_{4} \vee X_{5}\right)\right) \vee\left(\neg X_{6} \wedge \neg x_{4} \wedge \neg X_{5}\right)$

5．Transform and－gates．$x_{4}=x_{1} \wedge x_{2}$ becomes $C_{7}=\left(\neg x_{4} \vee x_{1}\right)$ and $C_{8}=\left(\neg x_{4} \vee x_{2}\right)$ and

$$
\begin{aligned}
C_{9}=\left(x_{4} \vee \neg x_{1} \vee \neg x_{2}\right) \quad & \diamond \neg x_{1} \Rightarrow \neg x_{4} \\
& \neg x_{2} \Rightarrow \neg x_{4}
\end{aligned}
$$

6．What＇s missing in our reduction？$x_{1} \wedge x_{2} \Rightarrow x_{4}$

Independent Set

translate login formula into a graph
We know IS \in NP．Now we want to show that 3 －SAT $\leq{ }_{p}$ IS．Turn an arbitrary 3 －SAT instance into an IS problem．
$\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right)$
1．Add 3 nodes in a triangle for each clause．
2．What＇s missing in our reduction？

3．How many problems have we shown are NP－Complete？we need to find are node per clause以解的全集可 \Rightarrow 了－SAT解的全集（ \because 未被迭到就是都可选）
Remember，this example is only an illustration to clarify my proof．My proof must work on all 3－SAT instances，not just this one！

There are a lot of NP－complete problems．This is why we highly suspect that $\mathrm{P} \neq \mathrm{NP}$ ．All we would have to do to prove $\mathrm{P}=\mathrm{NP}$ is come up with a polynomial time algorithm for one of these problems．With how much effort has been expended，we probably would have done so by now if it were possible．Proving that no polynomial algorithm exists for a problem is much much harder．

Set Packing

Given n elements $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, m$ subsets $S_{1}, S_{2}, \ldots, S_{m} \subseteq U$ ，and an integer k ．Are there k sets which don＇t intersect？

Think about the similarities between the problems．In Independent Set we are packing as many nodes as we can such that no edge is represented twice．In Set Packing we are packing as many subsets as we can such that no element is represented twice．

k－Clique

Given a graph and an integer k ，is there a set S of $\geq k$ nodes such that every pair of nodes in S have an edge between them？

There are a lot of NP－complete problems．This is why we highly suspect that $\mathrm{P} \neq \mathrm{NP}$ ．All we would have to do to prove $\mathrm{P}=\mathrm{NP}$ is come up with a polynomial time algorithm for one of these problems．With how much effort has been expended，we probably would have done so by now if it were possible．Proving that no polynomial algorithm exists for a problem is much much harder．$E N P$
IS $\leq p^{k}$－clique（ \because Is 求所有无edge的点，k－clique 求有所有edge的点）
invent all edges of $I S$ ．find k－clique ans for the new grap
get the ans for is
－定要show $\in N P \Rightarrow N P$ complete
（DH）

Directed Hamiltonian Cycle $\in N P$

Given a directed graph $G=(V, E)$ ，is there a simple directed cycle C that visits every node？

Undirected Hamiltonian Cycle

Given an undirected graph $G=(V, E)$ ，is there a simple cycle C that visits every node？
不写扣分＊
第一步：UHC GNP
第二步，DHC \leq PUHC
Turn Directed to Undirected：

把每个点都spliz 成三个

For problem 2：如果从 out 进in 出那整张图部是这样的
整张f卯就行

Travelling Salesman Problem

Find Undirected Hamittonion Cycle of weight $\leq D$
Given a set of n cities，a distance function $d(u, v)$ which specifies the distance between any two cities u and v ，and a value D ，find a tour of length $\leq D$ ．

From the comic XKCD：

$$
\begin{aligned}
& \text { 注: } \\
& d(a, b)+d(b, c)=d(a, c) \\
& \text { 每りcycle 满足三角形特形 } \\
& \quad(\text { 两边之和大于第㳠) }
\end{aligned}
$$

$$
T S P \in N P
$$

$$
U H C \leq p \text { TSP }
$$

$\Rightarrow T S P \in N P$ complete

Directed Longest Path

Given a directed graph and an integer k ，is there a path of $\geq k$ nodes？

Undirected Longest Path

Given an undirected graph and an integer k ，is there a path of $\geq k$ nodes？

What makes a problem NP－complete？

How does one recognize an NP－complete problem？You can＇t until you give a reduction．It is very difficult to tell at a glance．

Longest path is NP－complete．
Longest path on a DAG is easy！
3－SAT is NP－complete．
2－SAT is easy！
Independent Set is NP－Complete．
Independent Set on a tree is easy！

Packing：maximizing problem
NP －complete
\rightarrow IS，K－dique，Set parking
Covering：make sure everything is represented［min pwillem（最小化选择）］

$$
V c, s c
$$

Constraint Satisfaction
virmit-SAT, 3-SAT

Sequencing：（order）
directed Hamiltonian Cycle
Numerical：add up to some value
subset sum
Partitioning

$$
3-\text { color }
$$

SCI 270 Lecture 26：Numerical and Partitioning Problems

Subset Sum（SS）DP：psendo－polynomial

Given n positive integers $w_{1}, w_{2}, \ldots, w_{n}$ and a target W is there a subset of integers which add up exactly to W ？

$$
\begin{aligned}
& \begin{array}{llllllll}
x_{1} & x_{2} & x_{3} & C_{1} & C_{2} & C_{3} & C_{4}
\end{array} \text { To prove SS ENP-Complete } \\
& \text { 1) SS } \in N P \\
& \text { 2) } 3-S A T \leq p S S \\
& \begin{array}{l}
m=4 \\
\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(\overline{x_{1}} \vee \bar{x}_{2} \vee \bar{x}_{3}\right) \wedge\left(\overline{x_{1}} \vee \frac{c_{3}}{\bar{x}_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{3}\right)
\end{array} \\
& \text { create inti numbers } \\
& \begin{array}{c|ccccccc}
& x_{1} & x_{2} & x_{3} & C_{1} & C_{2} & C_{3} & C_{4} \\
\hline x_{1} & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\overline{x_{1}} & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
\frac{x_{2}}{} & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\bar{x}_{2} & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
x_{3} & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
\overline{x_{3}} & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline w & 1 & 1 & 1 & 1-3 & 1-3 & 1-3 & 1-3
\end{array} \\
& \Rightarrow 3^{m} \text { (不够好) } \\
& \text { Buffer }=c_{1}, c_{1}^{\prime} \text { 为了揍4 }
\end{aligned}
$$

Given an undirected graph $G=(V, E)$ ，is there a way to assign one of 3 colors Red，Green， and Blue，to each node，so that no two adjacent nodes have the same color？

3－color \in NP
Cl ：
$\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge \cdots$
3 －SAT $\leq P 3$－color

\uparrow
如果能在图上了－color，那么3－SA7有解

4-Color

Given an undirected graph $G=(V, E)$, is there a way to assign one of 4 colors Red, Green, Blue, and Purple to each node, so that no two adjacent nodes have the same color?

MY HOBBY:
 EMBEDDING NP-COMPLETE PROBEMS IN RESTAURANT ORDERS

3-D Matching

Given n instructors, n courses, n times, and a list of 3-tuples listing valid pairings of courses, times, and instructors, find an assignment where all instructors teach, and all classes are taught at different times.
(Aaron, 170, MW 2-3:20), (Aaron, 170, TTh 11-12:20), (Aaron, 270, TTh 11-12:20)
(Tian, 104, MW 2-3:20), (Tian, 170, TTh 11-12:20)
(Brendan, 104, TTh 2-3:20), (Brendan, 170, TTh 2-3:20), (Brendan, 270, MW 2-3:20)

CSCI 270 Lecture 27: The Limits of Computation

Suppose you are given some computer code, and the input which the code will receive. You want to know whether the code will halt, or enter an infinite loop.

Compilers can catch some very simple examples, but they can't catch the more complicated examples. It would be great if someone clever enough came along and wrote a program which could solve this problem. Why do you suppose no one has done this?

This problem is referred to as the Halting Problem.

The Barber Paradox

There is a barber in a small village. The barber cuts the hair of exactly the villagers who do not cut their own hair.

- What is the paradox? who cuts the barber's hair?
- Is this really a paradox?

An algorithm that solves the Halting Problem is the "barber". If we assume such an algorithm exists, we reach a paradox. The only conclusion is that such an algorithm cannot possibly exist.

Countable versus Uncountable

Consider two sets of numbers: the set of natural numbers $\{1,2,3, \ldots\}$, and the set of even natural numbers $\{2,4,6, \ldots\}$. Which set is larger? $f(x)=2 x$
Given two sets of infinite size, A and B, if there is a bijective function f which maps A to B, then these two sets are the same size.

In less formal terms, if you can pair each number in A with a unique number in B such that every number in B is paired exactly once, then A and B have the same size. Any infinite set of size equal to the natural numbers is called "countable".
uncountable: if size > natural numbers

- Are the set of even integers countable? Yes
- Are the set of positive rational numbers countable? Yes
- Are the set of real numbers countable? No

Algonthums are countable
Problems are uncountable ($>$ algorithms)

Proof by contradiction：assume we have a bijective function f which maps A（the set of natural numbers）to B（the set of real numbers）．It might be（for example）that：
－$f(1)=\pi \quad 3.1415926$
\rightarrow irrational number（无限小数）
b和f中的每个数都有一位小数不同
－$f(2)=e \quad 2.70828$
（Barber＇s）
－$f(3)=0.123456789$
－$f(4)=32 . \overline{33}$（repeating，of course），etc．
Now we will construct a real number $b<1$ which does not appear in this table，according to the following process（the process is referred to as diagonalization）．

If the first decimal place of $f(1)$ is 1 ，then the first decimal place of b will be 2 ．Otherwise，the first decimal place of b will be 1 ．

If the i th decimal place of $f(i)$ is 1 ，then the i th decimal place of b will be 2 ，otherwise it will be 1 ．
Given the above example function，$b=0.2211 \ldots$
－Does any input produce b as output？No（因为每个 input 都有一位小数不同）
－What does this have to do with Computer Science？
－Are the set of computer programs countable or not？Yes computer programming \Rightarrow string \Rightarrow Base 26 integers \Rightarrow countable
－Are the set of problems countable or not？No
To answer the last question，lets make some simplifying assumptions．All problems require as input a single natural number（clearly there are other problems which don＇t meet this criteria）．In （addition，all problems will return a boolean value（true or false）．
Restricted Def for problems（已经不是全集3）

Since the set of computer programs is countable，there is a bijective function from the natural numbers to the set of computer programs．We＇ll refer to the computer program which is output from $f(i)$ as M_{i} ．

Now list out the computer programs in order along the x axis．At entry (i, j) ，we write what M_{j} outputs when it is run on the input i ．

Can you identify a program which does not exist on this table？

Undecidable Problems

We will assume that the Halting Problem can be solved by program $H(M, w)$ ．It takes as input computer code M ，and input to that computer code w and returns True，meaning that M halts on $(M(\omega)=$ true $)$ input w ，or False，meaning that it doesn＇t halt．H always halts（otherwise it doesn＇t really solve the problem）．

Using our solution to the Halting Problem，we can write a different program $B(M, w)$ ．It works as follows：

构造 If（ $\mathrm{H}(\mathrm{M}, \mathrm{w}$ ）＝＝False）Then Return True
contradiction Else loop forever
What happens when I run B on input $M=B$ ？
－If $\mathrm{B}(\mathrm{B}, \mathrm{w})$ halts，then $\mathrm{H}(\mathrm{B}, \mathrm{w})$ returns True，which means $\mathrm{B}(\mathrm{B}, \mathrm{w})$ loops forever．Contradiction．
－If $\mathrm{B}(\mathrm{B}, \mathrm{w})$ doesn＇t halt，then $\mathrm{H}(\mathrm{B}, \mathrm{w})$ returns False，when means $\mathrm{B}(\mathrm{B}, \mathrm{w})$ returns True．Con－ tradiction．
Halting problem：重要的是查自己！
B is the barber from the barber paradox．If you assume B exists，you get a paradox．The only possible conclusion is that B does not exist．We also showed $B \leq H$ ，so H doesn＇t exist either！

XKCD：

